Antidiabetic, Hypolipidemic and Hepatoprotective Potential of Edible Leaves Extract from the Plant Chenopodium album (Linn) in Streptozotocin-Induced Diabetic Mice

Authors

  • Tripti Rani Paul Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi, Bangladesh
  • Monalisa Monowar Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi, Bangladesh
  • A. K. M. Shafiur Rahman Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi, Bangladesh
  • Md. Shahriar Kobir Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi, Bangladesh
  • Murshida Mun Liza Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi, Bangladesh
  • Most. Sheuti Akter Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi, Bangladesh
  • Tanbin Islam Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi, Bangladesh
  • Ashik Mosaddik East West University, Dhaka-1212, Bangladesh
  • Mir Imam Ibne Wahed Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh

DOI:

https://doi.org/10.54536/ajcp.v4i1.4598

Keywords:

Blood Sugar Level, Diabetes, Lipid Profile, Liver Enzyme, Streptozotocin

Abstract

Diabetes is a long-term illness that affects a large number of people globally. It increases a patient’s risk of morbidity and death, especially from cardiovascular disease. The current study aims to assess the antidiabetic and hypolipidemic potentials of C. album leaves extract in streptozotocin-induced diabetic mice. Acute toxicity tests and oral glucose tolerance tests were carried out. Streptozotocin (45 mg/kg) was given intraperitoneally to Swiss albino mice to cause diabetes. Diabetic mice subjected to oral administration of C. album extracts (CAL 200 and 400 mg/kg), metformin as standard (DS, 150mg/kg) and/or vehicle (DC) once daily for 15 days and age-matched healthy mice were used as normal control (NC). Blood glucose level and body weight of mice were measured on 0 day before and 5, 10 and 15 days of treatment. To measure serum glutamate-pyruvate transaminase (SGPT), serum glutamate-oxaloacetate transaminase (SGOT), low-density lipoproteins (LDL), high-density lipoproteins (HDL), total cholesterol (TC), and triglycerides (TG), mice were eventually killed, and blood samples were taken. The C. album extract improved glucose tolerance and no sign of toxicity was noticed in mice treated with the extract. Diabetic mice treated with C. album extract showed significant attenuation in blood glucose level and lipid profile. Moreover, oral treatment with C. album extracts significantly reduced SGPT and SGOT levels; and improved body weights in mice. The C. album extract was considered to be both safe and beneficial in terms of glucose and lipids reducing effectiveness, and might be used to protect liver function in diabetic mice.

Downloads

Download data is not yet available.

References

Ahmed, A. M. (2002). History of diabetes mellitus. Saudi Medical Journal, 23(4), 373-378.

Anbarasi. K., Ravi. B.K. & Sathasivasubramanian., S. (2012). Nutrition and Oral Health. Asian Pacific Journal of Tropical Medicinal Disease, 2(5), 405-410.

Arumugam, G., Manjula, P., & Paari, N. (2013). A review: Anti diabetic medicinal plants used for diabetes mellitus. Journal of Acute Disease, 2(3), 196-200.

Asati, V., Srivastava, A., Mukherjee, S., & Sharma, P. K. (2021). Comparative analysis of antioxidant and antiproliferative activities of crude and purified flavonoid enriched fractions of pods/seeds of two desert legumes Prosopis cineraria and Cyamopsis tetragonoloba. Heliyon, 7(6).

Baynes, H. W. (2015). Classification, pathophysiology, diagnosis and management of diabetes mellitus. Journal of Diabetes & Metabolism, 6(5), 1-9.

Bergmeyer, H. U. (Ed.). (2012). Methods of enzymatic analysis. Elsevier.

Bhandari, M. R., Jong-Anurakkun, N., Hong, G., & Kawabata, J. (2008). α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chemistry, 106(1), 247-252.

Bonner-Weir, S. (1988). Morphological evidence for pancreatic polarity of β-cell within islets of Langerhans. Diabetes, 37(5), 616-621.

Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813-20.

Coskun, O., Kanter, M., Korkmaz, A., & Oter, S. (2005). Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacological Research, 51(2), 117-123.

Gandhi, G. R., Ignacimuthu, S., & Paulraj, M. G. (2011). Solanum torvum Swartz. fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats. Food and Chemical Toxicology, 49(11), 2725-2733.

Ghosh, S., & Suryawanshi, S. A. (2001). Effect of Vinca rosea extracts in treatment of alloxan induced diabetes in male albino rats. Indian Journal of Experimental Biology, 39(8), 748-759.

Gomes, M. B., Rathmann, W., Charbonnel, B., Khunti, K., Kosiborod, M., Nicolucci, A.,& Ji, L. (2019). Treatment of type 2 diabetes mellitus worldwide: baseline patient characteristics in the global discover study. Diabetes Research and Clinical Practice, 151, 20-32.

Guyton, A. C. & Hall, J. E. (2006) Textbook of Medical Physiology. London: Elsevier Saunders; 11.

Hahm, S. W., Park, J., & Son, Y. S. (2011). Opuntia humifusa stems lower blood glucose and cholesterol levels in streptozotocin-induced diabetic rats. Nutrition Research, 31(6), 479-487.

Jacobson, T. A., Miller, M., & Schaefer, E. J. (2007). Hypertriglyceridemia and cardiovascular risk reduction. Clinical Therapeutics, 29(5), 763-777.

Jonsson, M., Jestoi, M., Nathanail, A. V., Kokkonen, U. M., Anttila, M., Koivisto, P., & Peltonen, K. (2013). Application of OECD Guideline 423 in assessing the acute oral toxicity of moniliformin. Food and Chemical Toxicology, 53, 27-32.

Juárez-Reyes, K., Brindis, F., Medina-Campos, O. N., Pedraza-Chaverri, J., Bye, R., Linares, E., & Mata, R. (2015). Hypoglycemic, antihyperglycemic, and antioxidant effects of the edible plant Anoda cristata. Journal of Ethnopharmacology, 161, 36-45.

Kant, S. (2018). Pharmacological evaluation of antidiabetic and antihyperlipidemic activity of Chenopodium album root extract in male Wistar albino rat models. International Journal of Green Pharmacy, 12(2).

Kasetti, R. B., Rajasekhar, M. D., Kondeti, V. K., Fatima, S. S., Kumar, E. G. T., Swapna, S. & Rao, C. A. (2010). Antihyperglycemic and antihyperlipidemic activities of methanol: water (4:1) fraction isolated from aqueous extract of Syzygium alternifolium seeds in streptozotocin induced diabetic rats. Food and Chemical Toxicology, 48(4), 1078-1084.

Khatune, N. A., Rahman, B. M., Barman, R. K., & Wahed, M. I. I. (2016). Antidiabetic, antihyperlipidemic and antioxidant properties of ethanol extract of Grewia asiatica Linn. bark in alloxan-induced diabetic rats. BMC Complementary and Alternative Medicine, 16, 1-9.

Krishnakumar, K., Augusti, K. T., & Vijayammal, P. L. (2000). Communications - Hypolipidemic effect of Salacia oblonga Wall root in streptozotocin diabetic rats. Medical Science Research, 28(1), 65-68.

Kumar, V., Ahmed, D., Verma, A., Anwar, F., Ali, M., & Mujeeb, M. (2013). Umbelliferone β-D-galactopyranoside from Aegle marmelos (L.) corr. an ethnomedicinal plant with antidiabetic, antihyperlipidemic and antioxidative activity. BMC Complementary and Alternative Medicine, 13, 1-20.

Li, W. L., Zheng, H. C., Bukuru, J., & De Kimpe, N. (2004). Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. Journal of Ethnopharmacology, 92(1), 1-21.

Lyra, R., Oliveira, M., Lins, D., & Cavalcanti, N. (2006). Prevention of type 2 diabetes mellitus. Arquivos Brasileiros de Endocrinologia & Metabologia, 50(2), 239-249.

Merecz, A., Markiewicz, L., Sliwinska, A., Kosmalski, M., Kasznicki, J., Drzewoski, J., & Majsterek, I. (2015). Analysis of oxidative DNA damage and its repair in Polish patients with diabetes mellitus type 2: Role in pathogenesis of diabetic neuropathy. Advances in Medical Sciences, 60(2), 220-230.

Molina, M. F., Sanchez-Reus, I., Iglesias, I., & Benedi, J. (2003). Quercetin, a flavonoid antioxidant, prevents and protects against ethanol-induced oxidative stress in mouse liver. Biological and Pharmaceutical Bulletin, 26(10), 1398-1402.

Nakamura, M., Satoh, N., Suzuki, M., Kume, H., Homma, Y., Seki, G., & Horita, S. (2015). Stimulatory effect of insulin on renal proximal tubule sodium transport is preserved in type 2 diabetes with nephropathy. Biochemical and Biophysical Research Communications, 461(1), 154-158.

Nakano, H., Monden, M., Umeshita, K., Murata, M., Miyoshi, H., Kanai. T., Gotoh. M. & Mori, T., (1994). Protective effects of prostaglandin 12 analogues on super-oxide induced hepatocyte injury. Surgery, 116(5), 883-9.

Ozougwu, J. C., Obimba, K. C., Belonwu, C. D., & Unakalamba, C. B. (2013). The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. Journal of Physiology and Pathophysiology, 4(4), 46-57.

Patlak, M. (2002). New weapons to combat an ancient disease: treating diabetes. The FASEB Journal, 16(14), 1853e-1853e.

Plummer, D. I. (1985). An introduction to practical biochemistry (2nd ed., pp. 136–143). Tata McGraw-Hill Publishing Co. Ltd.

Pollock, J. R. A., & Stevens, R. (1965). Dictionary of organic compounds (4th ed.). Eyre and Spottiswoode Publishers.

Porchezhian, E., Ansari, S. H., & Shreedharan, N. K. K. (2000). Antihyperglycemic activity of Euphrasia officinale leaves. Fitoterapia, 71(5), 522-526.

Reddy, A. R., Reddy, P. G., Venkateshwarlu, E., Srinivas, N., & Nirmala, D. (2012). Anti-diabetic and hypolipidemic effect of Acalypha indica in streptozotocin nicotinamide induced type-II diabetic rats. International Journal of Pharmacy and Pharmaceutical Sciences, 4(2), 205-12.

Reiner, Ž., & Tedeschi-Reiner, E. (2006). Th-W47:2 Atherosclerosis-a paradox of Eastern European countries. Atherosclerosis Supplement, 7(3), 461-461.

Rizvi, S. I., & Mishra, N. (2013). Traditional Indian medicines used for the management of Type 2 diabetes mellitus. Journal of Diabetes Research, 712092.

Robertson, R. P. (2010). Antioxidant drugs for treating β-cell oxidative stress in type 2 diabetes: glucose-centric versus insulin-centric therapy. Discovery Medicine, 9(45), 132-137.

Salsberry, P., Tanda, R., Anderson, S. E., & Kamboj, M. K. (2018). Pediatric type 2 diabetes: Prevention and treatment through a life course health development framework. Handbook of Life Course Health Development, 197-236.

Schlede, E. (2002). Oral acute toxic class method: OECD Test Guideline 423. Rapporti Istisan, 41, 32-36.

Schumann, G., Bonora, R., Ceriotti, F., Férard, G., Ferrero, C. A., Franck, P. F., … Schimmel, H. G. (2002). IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C. Part 4: Reference procedure for the measurement of catalytic concentration of alanine aminotransferase. Clinical Chemistry and Laboratory Medicine, 40(7), 725–733.

Simons, L. A. (2002). Additive effect of plant sterol-ester margarine and cerivastatin in lowering low-density lipoprotein cholesterol in primary hypercholesterolemia. The American Journal of Cardiology, 90(7), 737-740.

Suleman, M., Hassan, A. U. & Abbas, F. I. (2021). Antibacterial, antiparasitic and phytochemical activities of Chenopodium album (Bathua) leaves extract. Bangladesh Journal of Botany 50(2), 417-421

Takayanagi, R., Inoguchi, T., & Ohnaka, K. (2010). Clinical and experimental evidence for oxidative stress as an exacerbating factor of diabetes mellitus. Journal of Clinical Biochemistry and Nutrition, 48(1), 72-77.

Taskinen, M. R. (1987). Lipoprotein lipase in diabetes. Diabetes & Metabolism Reviews, 3(2), 551-570.

Trease, G. E., & Evans, W. C. (1996). Pharmacognosy (12th ed., pp. 344–539). Baillière Tindall, ELBS Publications.

UK Prospective Diabetes Study (UKPDS) Group. (1998). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The Lancet, 352(9131), 837-853.

Yokozawa, T., Ishida, A., Cho, E. J., & Nakagawa, T. (2003). The effects of Coptidis rhizoma extract on a hypercholesterolemic animal model. Phytomedicine, 10(1), 17-22.

Downloads

Published

2025-06-24

How to Cite

Paul, T. R., Monowar, M., Rahman, A. K. M. S., Kobir, M. S., Liza, M. M., Akter, M. S., Islam, T., Mosaddik, A., & Wahed, M. I. I. (2025). Antidiabetic, Hypolipidemic and Hepatoprotective Potential of Edible Leaves Extract from the Plant Chenopodium album (Linn) in Streptozotocin-Induced Diabetic Mice. American Journal of Chemistry and Pharmacy, 4(1), 29–36. https://doi.org/10.54536/ajcp.v4i1.4598