Chemical Modulation of Amyloid Beta Oligomer’s in Alzheimer’s Disease

Authors

  • Muhammad Jehangir School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
  • Sayyad Muhammad Department of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
  • Muhammad Tayyab School of Pharmaceutical science, Nanjing Tech University, Nanjing 211816, China
  • Wajid Ali School of Pharmaceutical science, Nanjing Tech University, Nanjing 211816, China
  • Ali Danish Alvi School of Pharmaceutical science, Nanjing Tech University, Nanjing 211816, China
  • Muhammad Naveed School of Biological and Pharmaceutical Engineering, Nanjing Tech University, P.R. China

DOI:

https://doi.org/10.54536/ajcp.v4i1.4886

Keywords:

Alzheimer’s Diseases, Aβ Oligomer’s, Degradation, Protein Aggregation and Condensation, Stabilization

Abstract

Amyloid beta oligomers play a key role in the pathophysiology of Alzheimer’s disease. Since it contributes to memory and neuronal loss, cognitive decline, degradation of neurons as well as diseases progression. As Aβ oligomer is very small and heterogeneous and it can change from one shape to another shape therefore it has various kinds of morphologies including monomers, oligomers and fibrils. Due to instable behavior of these proteins, it’s very difficult to understand its exact mechanism. In this concise review, information over the past seven years concentrated on the molecular characteristics of amyloid-β oligomers has been summarized along with two pathways involving protein aggregation and condensation. Furthermore, metal complexes, immunotherapies, and anti-Aβ antibodies are reported here, which can modulate aggregation, stabilize non-toxic forms, and enhance degradation. Finally, new discoveries on small molecules that control, modify and inhibit the progression of amyloid-β oligomers are integrated, as these are key characteristics of Alzheimer’s disease.

Downloads

Download data is not yet available.

References

Abelein, A. (2023). Metal Binding of Alzheimer’s Amyloid-β and Its Effect on Peptide Self-Assembly. Accounts of Chemical Research, 56(19), 2653-2663. https://doi.org/10.1021/acs.accounts.3c00370

Abramov-Harpaz, K., & Miller, Y. (2022). Insights into Non-Proteolytic Inhibitory Mechanisms of Polymorphic Early-Stage Amyloid β Oligomers by Insulin Degrading Enzyme. Biomolecules, 12(12). https://doi.org/10.3390/biom12121886

Alberti, S., & Hyman, A. A. (2021). Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nature Reviews Molecular Cell Biology, 22(3), 196-213. https://doi.org/10.1038/s41580-020-00326-6

Allnutt, M. A., & Matera, K. M. (2023). Stabilization and Reduced Cytotoxicity of Amyloid Beta Aggregates in the Presence of Catechol Neurotransmitters. Neurochemical Research, 49(2), 379-387. https://doi.org/10.1007/s11064-023-04036-1

Amano, A., Sanjo, N., Araki, W., Anraku, Y., Nakakido, M., Matsubara, E., Tomiyama, T., Nagata, T., Tsumoto, K., Kataoka, K., & Yokota, T. (2023). Peripheral administration of nanomicelle-encapsulated anti-Aβ oligomer fragment antibody reduces various toxic Aβ species in the brain. Journal of Nanobiotechnology, 21(1). https://doi.org/10.1186/s12951-023-01772-y

Amzallag, E., & Hornstein, E. (2022). Crosstalk between Biomolecular Condensates and Proteostasis. Cells, 11(15). https://doi.org/10.3390/cells11152415

An, J., Kim, K., Lim, H. J., Kim, H. Y., Shin, J., Park, I., Cho, I., Kim, H. Y., Kim, S., McLean, C., Choi, K. Y., Kim, Y., Lee, K. H., & Kim, J. S. (2024). Early onset diagnosis in Alzheimer’s disease patients via amyloid-β oligomers-sensing probe in cerebrospinal fluid. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-44818-x

Andrade, S., Ramalho, M. J., Loureiro, J. A., & Pereira, M. d. C. (2019). Natural Compounds for Alzheimer’s Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. International Journal of Molecular Sciences, 20(9). https://doi.org/10.3390/ijms20092313

Araki, W. (2023). Aβ Oligomer Toxicity-Reducing Therapy for the Prevention of Alzheimer’s Disease: Importance of the Nrf2 and PPARγ Pathways. Cells, 12(10). https://doi.org/10.3390/cells12101386

Araki, W., & Kametani, F. (2022). Protection against Amyloid-β Oligomer Neurotoxicity by Small Molecules with Antioxidative Properties: Potential for the Prevention of Alzheimer’s Disease Dementia. Antioxidants, 11(1). https://doi.org/10.3390/antiox11010132

Bao, J., Liu, W., Zhou, H.-y., Gui, Y.-r., Yang, Y.-h., Wu, M.-j., Xiao, Y.-f., Shang, J.-t., Long, G.-f., & Shu, X.-j. (2020). Epigallocatechin-3-gallate Alleviates Cognitive Deficits in APP/PS1 Mice. Current Medical Science, 40(1), 18-27. https://doi.org/10.1007/s11596-020-2142-z

Cascella, R., Bigi, A., Riffert, D. G., Gagliani, M. C., Ermini, E., Moretti, M., Cortese, K., Cecchi, C., & Chiti, F. (2022). A quantitative biology approach correlates neuronal toxicity with the largest inclusions of TDP-43. Science Advances, 8(30). https://doi.org/10.1126/sciadv.abm6376

Chen, H., McGowan, E. M., Ren, N., Lal, S., Nassif, N., Shad-Kaneez, F., Qu, X., & Lin, Y. (2018). Nattokinase: A Promising Alternative in Prevention and Treatment of Cardiovascular Diseases. Biomarker Insights, 13. https://doi.org/10.1177/1177271918785130

Cheng, Y., Tian, D.-Y., & Wang, Y.-J. (2020). Peripheral clearance of brain-derived Aβ in Alzheimer’s disease: pathophysiology and therapeutic perspectives. Translational Neurodegeneration, 9(1). https://doi.org/10.1186/s40035-020-00195-1

Cline, E. N., Bicca, M. A., Viola, K. L., Klein, W. L., Perry, G., Avila, J., Moreira, P. I., Sorensen, A. A., & Tabaton, M. (2018). The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. Journal of Alzheimer’s Disease, 64(s1), S567-S610. https://doi.org/10.3233/jad-179941

de Dios, C., Bartolessis, I., Roca-Agujetas, V., Barbero-Camps, E., Mari, M., Morales, A., & Colell, A. (2019). Oxidative inactivation of amyloid beta-degrading proteases by cholesterol-enhanced mitochondrial stress. Redox Biology, 26. https://doi.org/10.1016/j.redox.2019.101283

Derreumaux, P., Nguyen, P., & Sterpone, F. (2022). https://doi.org/10.22541/au.167108799.96485165/v1

Diociaiuti, M., Bonanni, R., Cariati, I., Frank, C., & D’Arcangelo, G. (2021). Amyloid Prefibrillar Oligomers: The Surprising Commonalities in Their Structure and Activity. International Journal of Molecular Sciences, 22(12). https://doi.org/10.3390/ijms22126435

Du, H., Song, J., Ma, F., Gao, H., Zhao, X., Mao, R., He, X., & Yan, Y. (2023). Novel harmine derivatives as potent acetylcholinesterase and amyloid beta aggregation dual inhibitors for management of Alzheimer’s disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 38(1). https://doi.org/10.1080/14756366.2023.2281893

El Gaamouch, F., Chen, F., Ho, L., Lin, H.-Y., Yuan, C., Wong, J., & Wang, J. (2022). Benefits of dietary polyphenols in Alzheimer’s disease. Frontiers in Aging Neuroscience, 14. https://doi.org/10.3389/fnagi.2022.1019942

Fish, P. V., Steadman, D., Bayle, E. D., & Whiting, P. (2019). New approaches for the treatment of Alzheimer’s disease. Bioorganic & Medicinal Chemistry Letters, 29(2), 125-133. https://doi.org/10.1016/j.bmcl.2018.11.034

Foley, A. R., Lee, H.-W., & Raskatov, J. A. (2019). A Focused Chiral Mutant Library of the Amyloid β 42 Central Electrostatic Cluster as a Tool To Stabilize Aggregation Intermediates. The Journal of Organic Chemistry, 85(3), 1385-1391. https://doi.org/10.1021/acs.joc.9b02312

French, R. L., Grese, Z. R., Aligireddy, H., Dhavale, D. D., Reeb, A. N., Kedia, N., Kotzbauer, P. T., Bieschke, J., & Ayala, Y. M. (2019). Detection of TAR DNA-binding protein 43 (TDP-43) oligomers as initial intermediate species during aggregate formation. Journal of Biological Chemistry, 294(17), 6696-6709. https://doi.org/10.1074/jbc.RA118.005889

Gao, G., Zhang, T., Zhang, W., Luo, Z., Zhang, Z., Gu, Z., Yu, L., Mu, Q., & Sun, T. (2022). High efficiency and related mechanism of Au(RC) nanoclusters on disaggregating Aβ fibrils. Journal of Colloid and Interface Science, 621, 67-76. https://doi.org/10.1016/j.jcis.2022.04.085

Grasso, G., & Danani, A. (2020). Molecular simulations of amyloid beta assemblies. Advances in Physics: X, 5(1). https://doi.org/10.1080/23746149.2020.1770627

Haerianardakani, S., Kreutzer, A. G., Salveson, P. J., Samdin, T. D., Guaglianone, G. E., & Nowick, J. S. (2020). Phenylalanine Mutation to Cyclohexylalanine Facilitates Triangular Trimer Formation by β-Hairpins Derived from Aβ. Journal of the American Chemical Society, 142(49), 20708-20716. https://doi.org/10.1021/jacs.0c09281

Han, Y.-L., Yin, H.-H., Li, C., Du, J., He, Y., & Guan, Y.-X. (2025). Discovery of New Pentapeptide Inhibitors Against Amyloid-β Aggregation Using Word2Vec and Molecular Simulation. ACS Chemical Neuroscience, 16(6), 1055-1065. https://doi.org/10.1021/acschemneuro.4c00661

Hardenberg, M., Horvath, A., Ambrus, V., Fuxreiter, M., & Vendruscolo, M. (2020). Widespread occurrence of the droplet state of proteins in the human proteome. Proceedings of the National Academy of Sciences, 117(52), 33254-33262. https://doi.org/10.1073/pnas.2007670117

Hector, A., & Brouillette, J. (2021). Hyperactivity Induced by Soluble Amyloid-β Oligomers in the Early Stages of Alzheimer’s Disease. Frontiers in Molecular Neuroscience, 13. https://doi.org/10.3389/fnmol.2020.600084

Huang, Y.-r., & Liu, R.-t. (2020). The Toxicity and Polymorphism of β-Amyloid Oligomers. International Journal of Molecular Sciences, 21(12). https://doi.org/10.3390/ijms21124477

Hughes, M. P., Sawaya, M. R., Boyer, D. R., Goldschmidt, L., Rodriguez, J. A., Cascio, D., Chong, L., Gonen, T., & Eisenberg, D. S. (2018). Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks. Science, 359(6376), 698-701. https://doi.org/10.1126/science.aan6398

Huraskin, D., & Horn, A. H. C. (2019). Alkali ion influence on structure and stability of fibrillar amyloid-β oligomers. Journal of Molecular Modeling, 25(2). https://doi.org/10.1007/s00894-018-3920-4

Hwang, S. S., Chan, H., Sorci, M., Van Deventer, J., Wittrup, D., Belfort, G., & Walt, D. (2019). Detection of amyloid β oligomers toward early diagnosis of Alzheimer’s disease. Analytical Biochemistry, 566, 40-45. https://doi.org/10.1016/j.ab.2018.09.011

Jang, C., Portugal Barron, D., Duo, L., Ma, C., Seabaugh, H., & Guo, Z. (2023). EPR Studies of Aβ42 Oligomers Indicate a Parallel In-Register β-Sheet Structure. ACS Chemical Neuroscience, 15(1), 86-97. https://doi.org/10.1021/acschemneuro.3c00364

Jehangir, M., Ali, R., Hui, W. X., & Wang, Y. (2024). An Updated Review of Amyloid Beta Oligomer Toxicity Inhibition and Detection for Alzheimer’s Disease Diagnosis. Cognizance Journal of Multidisciplinary Studies, 4(7), 164-186. https://doi.org/10.47760/cognizance.2024.v04i07.015

Kanaan, N. M., Hamel, C., Grabinski, T., & Combs, B. (2020). Liquid-liquid phase separation induces pathogenic tau conformations in vitro. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16580-3

Khatua, P., Jana, A. K., & Hansmann, U. H. E. (2021). Effect of Lauric Acid on the Stability of Aβ42 Oligomers. ACS Omega, 6(8), 5795-5804. https://doi.org/10.1021/acsomega.0c06211

König, A. S., Rösener, N. S., Gremer, L., Tusche, M., Flender, D., Reinartz, E., Hoyer, W., Neudecker, P., Willbold, D., & Heise, H. (2021). Structural details of amyloid β oligomers in complex with human prion protein as revealed by solid-state MAS NMR spectroscopy. Journal of Biological Chemistry, 296. https://doi.org/10.1016/j.jbc.2021.100499

Kubo, K., Watanabe, H., Kumeta, H., Aizawa, T., Seki, C., Nakano, H., Tokuraku, K., & Uwai, K. (2022). Chemical analysis of amyloid β aggregation inhibitors derived from Geranium thunbergii. Bioorganic & Medicinal Chemistry, 68. https://doi.org/10.1016/j.bmc.2022.116840

Kumar, R., Das, S., Mohite, G. M., Rout, S. K., Halder, S., Jha, N. N., Ray, S., Mehra, S., Agarwal, V., & Maji, S. K. (2018). Cytotoxic Oligomers and Fibrils Trapped in a Gel‐like State of α‐Synuclein Assemblies. Angewandte Chemie International Edition, 57(19), 5262-5266. https://doi.org/10.1002/anie.201711854

Li, C. H., Coffey, E. L., Dall’Agnese, A., Hannett, N. M., Tang, X., Henninger, J. E., Platt, J. M., Oksuz, O., Zamudio, A. V., Afeyan, L. K., Schuijers, J., Liu, X. S., Markoulaki, S., Lungjangwa, T., LeRoy, G., Svoboda, D. S., Wogram, E., Lee, T. I., Jaenisch, R., & Young, R. A. (2020). MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature, 586(7829), 440-444. https://doi.org/10.1038/s41586-020-2574-4

Li, J., Liao, W., Huang, D., Ou, M., Chen, T., Wang, X., Zhao, R., Zhang, L., Mei, L., Liu, J., & Luan, P. (2023). Current strategies of detecting Aβ species and inhibiting Aβ aggregation: Status and prospects. Coordination Chemistry Reviews, 495. https://doi.org/10.1016/j.ccr.2023.215375

Limbocker, R., Chia, S., Ruggeri, F. S., Perni, M., Cascella, R., Heller, G. T., Meisl, G., Mannini, B., Habchi, J., Michaels, T. C. T., Challa, P. K., Ahn, M., Casford, S. T., Fernando, N., Xu, C. K., Kloss, N. D., Cohen, S. I. A., Kumita, J. R., Cecchi, C., Zasloff, M., Linse, S., Knowles, T. P. J., Chiti, F., Vendruscolo, M., & Dobson, C. M. (2019). Trodusquemine enhances Aβ42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nature Communications, 10(1). https://doi.org/10.1038/s41467-018-07699-5

Liu, H., Zhao, X., Chen, J., Win, Y. Y., & Cai, J. (2025). Unnatural foldamers as inhibitors of Aβ aggregation via stabilizing the Aβ helix. Chemical Communications, 61(24), 4586-4594. https://doi.org/10.1039/d4cc05280c

Loeffler, D. A. (2023). Experimental approaches for altering the expression of Abeta‐degrading enzymes. Journal of Neurochemistry, 164(6), 725-763. https://doi.org/10.1111/jnc.15762

Luo, F., Gui, X., Zhou, H., Gu, J., Li, Y., Liu, X., Zhao, M., Li, D., Li, X., & Liu, C. (2018). Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Nature Structural & Molecular Biology, 25(4), 341-346. https://doi.org/10.1038/s41594-018-0050-8

Madhu, P., & Mukhopadhyay, S. (2021). Distinct types of amyloid‐β oligomers displaying diverse neurotoxicity mechanisms in Alzheimer’s disease. Journal of Cellular Biochemistry, 122(11), 1594-1608. https://doi.org/10.1002/jcb.30141

Mantile, F., & Prisco, A. (2020). Vaccination against β-Amyloid as a Strategy for the Prevention of Alzheimer’s Disease. Biology, 9(12). https://doi.org/10.3390/biology9120425

Martinez Pomier, K., Ahmed, R., & Melacini, G. (2020). Catechins as Tools to Understand the Molecular Basis of Neurodegeneration. Molecules, 25(16). https://doi.org/10.3390/molecules25163571

Matsushima, Y., Irie, Y., Kageyama, Y., Bellier, J. P., Tooyama, I., Maki, T., Kume, T., Yanagita, R. C., & Irie, K. (2022). Structure Optimization of the Toxic Conformation Model of Amyloid β42 by Intramolecular Disulfide Bond Formation. ChemBioChem, 23(8). https://doi.org/10.1002/cbic.202200029

Matuszyk, M. M., Garwood, C. J., Ferraiuolo, L., Simpson, J. E., Staniforth, R. A., & Wharton, S. B. (2021). Biological and methodological complexities of beta‐amyloid peptide: Implications for Alzheimer’s disease research. Journal of Neurochemistry, 160(4), 434-453. https://doi.org/10.1111/jnc.15538

Mohammed, A. A., Barale, S. S., Kamble, S. A., Paymal, S. B., & Sonawane, K. D. (2023). Molecular insights into the inhibition of early stages of Aβ peptide aggregation and destabilization of Alzheimer’s Aβ protofibril by dipeptide D-Trp-Aib: A molecular modelling approach. International Journal of Biological Macromolecules, 242. https://doi.org/10.1016/j.ijbiomac.2023.124880

Mokra, D., Joskova, M., & Mokry, J. (2022). Therapeutic Effects of Green Tea Polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. International Journal of Molecular Sciences, 24(1). https://doi.org/10.3390/ijms24010340

Momma, Y., Tsuji, M., Oguchi, T., Ohashi, H., Nohara, T., Ito, N., Yamamoto, K., Nagata, M., Kimura, A. M., Nakamura, S., Kiuchi, Y., & Ono, K. (2023). The Curcumin Derivative GT863 Protects Cell Membranes in Cytotoxicity by Aβ Oligomers. International Journal of Molecular Sciences, 24(4). https://doi.org/10.3390/ijms24043089

Moracci, L., Crotti, S., Traldi, P., Agostini, M., Cosma, C., & Lapolla, A. (2021). Role of mass spectrometry in the study of interactions between amylin and metal ions. Mass Spectrometry Reviews, 42(3), 984-1007. https://doi.org/10.1002/mas.21732

Mroczko, B., Groblewska, M., Litman-Zawadzka, A., Kornhuber, J., & Lewczuk, P. (2017). Amyloid β oligomers (AβOs) in Alzheimer’s disease. Journal of Neural Transmission, 125(2), 177-191. https://doi.org/10.1007/s00702-017-1820-x

Muhammad, J., Xiaohui, W., Kashif, k., Umar, A., & Ke, Z. (2024). Chemical regulation of Tau oligomers in phase separation in Alzheimer’s disease. World Journal of Biology Pharmacy and Health Sciences, 19(2), 380-390. https://doi.org/10.30574/wjbphs.2024.19.2.0534

Muhammad, J., Xiaohui, W., Ye, Z., Umar, A., Kashif, k., & Wang, c. (2024). Inhibition of amyloid beta oligomer, fibrils, and peptide using nanoparticles to disrupt Alzheimer’s pathogenesis. World Journal of Advanced Research and Reviews, 23(2), 343-357. https://doi.org/10.30574/wjarr.2024.23.2.2349

Ono, K., & Tsuji, M. (2020). Protofibrils of Amyloid-β are Important Targets of a Disease-Modifying Approach for Alzheimer’s Disease. International Journal of Molecular Sciences, 21(3). https://doi.org/10.3390/ijms21030952

Pagano, K., Tomaselli, S., Molinari, H., & Ragona, L. (2020). Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.619667

Panza, F., Dibello, V., Sardone, R., Zupo, R., Castellana, F., Leccisotti, I., Moretti, M. C., Altamura, M., Bellomo, A., Daniele, A., Solfrizzi, V., Resta, E., & Lozupone, M. (2025). Successes and failures: the latest advances in the clinical development of amyloid–β–targeting monoclonal antibodies for treating Alzheimer’s disease. Expert Opinion on Biological Therapy, 25(3), 275-283. https://doi.org/10.1080/14712598.2025.2463963

Peng, C., Wang, X., Li, Y., Li, H.-W., & Wong, M. S. (2019). Versatile fluorescent probes for near-infrared imaging of amyloid-β species in Alzheimer’s disease mouse model. Journal of Materials Chemistry B, 7(12), 1986-1995. https://doi.org/10.1039/c9tb00161a

Penke, B., Szűcs, M., & Bogár, F. (2020). Oligomerization and Conformational Change Turn Monomeric β-Amyloid and Tau Proteins Toxic: Their Role in Alzheimer’s Pathogenesis. Molecules, 25(7). https://doi.org/10.3390/molecules25071659

Phan, H. T. T., Samarat, K., Takamura, Y., Azo-Oussou, A. F., Nakazono, Y., & Vestergaard, M. d. C. (2019). Polyphenols Modulate Alzheimer’s Amyloid Beta Aggregation in a Structure-Dependent Manner. Nutrients, 11(4). https://doi.org/10.3390/nu11040756

Rana, M., & Sharma, A. K. (2019). Cu and Zn interactions with Aβ peptides: consequence of coordination on aggregation and formation of neurotoxic soluble Aβ oligomers. Metallomics, 11(1), 64-84. https://doi.org/10.1039/c8mt00203g

Rostami, J., Mothes, T., Kolahdouzan, M., Eriksson, O., Moslem, M., Bergström, J., Ingelsson, M., O’Callaghan, P., Healy, L. M., Falk, A., & Erlandsson, A. (2021). Crosstalk between astrocytes and microglia results in increased degradation of α-synuclein and amyloid-β aggregates. Journal of Neuroinflammation, 18(1). https://doi.org/10.1186/s12974-021-02158-3

Russ, H., Mazzanti, M., Parsons, C., Riemann, K., Gebauer, A., & Rammes, G. (2022). The Small Molecule GAL-201 Efficiently Detoxifies Soluble Amyloid β Oligomers: New Approach towards Oral Disease-Modifying Treatment of Alzheimer’s Disease. International Journal of Molecular Sciences, 23(10). https://doi.org/10.3390/ijms23105794

Saha, D., & Jana, B. (2022). Identifying the Template for Oligomer to Fibril Conversion for Amyloid‐β (1‐42) Oligomers using Hamiltonian Replica Exchange Molecular Dynamics. ChemPhysChem, 23(24). https://doi.org/10.1002/cphc.202200393

Sahoo, B. R., Panda, P. K., Liang, W., Tang, W.-J., Ahuja, R., & Ramamoorthy, A. (2021). Degradation of Alzheimer’s Amyloid-β by a Catalytically Inactive Insulin-Degrading Enzyme. Journal of Molecular Biology, 433(13). https://doi.org/10.1016/j.jmb.2021.166993

Savastano, A., Flores, D., Kadavath, H., Biernat, J., Mandelkow, E., & Zweckstetter, M. (2020). Disease‐Associated Tau Phosphorylation Hinders Tubulin Assembly within Tau Condensates. Angewandte Chemie International Edition, 60(2), 726-730. https://doi.org/10.1002/anie.202011157

Sehar, U., Rawat, P., Reddy, A. P., Kopel, J., & Reddy, P. H. (2022). Amyloid Beta in Aging and Alzheimer’s Disease. International Journal of Molecular Sciences, 23(21). https://doi.org/10.3390/ijms232112924

Senapati, S., Secchi, V., Cova, F., Richman, M., Villa, I., Yehuda, R., Shenberger, Y., Campione, M., Rahimipour, S., & Monguzzi, A. (2023). Noninvasive Treatment of Alzheimer’s Disease with Scintillating Nanotubes. Advanced Healthcare Materials, 12(32). https://doi.org/10.1002/adhm.202301527

Sharari, S., Vaikath, N. N., Tsakou, M., Ghanem, S. S., & Vekrellis, K. (2023). Screening for Novel Inhibitors of Amyloid Beta Aggregation and Toxicity as Potential Drugs for Alzheimer’s Disease. International Journal of Molecular Sciences, 24(14). https://doi.org/10.3390/ijms241411326

Shin, Y., Berry, J., Pannucci, N., Haataja, M. P., Toettcher, J. E., & Brangwynne, C. P. (2017). Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets. Cell, 168(1-2), 159-171.e114. https://doi.org/10.1016/j.cell.2016.11.054

Sikanyika, N. L., Parkington, H. C., Smith, A. I., & Kuruppu, S. (2019). Powering Amyloid Beta Degrading Enzymes: A Possible Therapy for Alzheimer’s Disease. Neurochemical Research, 44(6), 1289-1296. https://doi.org/10.1007/s11064-019-02756-x

Song, C., Shi, J., Zhang, P., Zhang, Y., Xu, J., Zhao, L., Zhang, R., Wang, H., & Chen, H. (2022). Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond. Translational Neurodegeneration, 11(1). https://doi.org/10.1186/s40035-022-00292-3

Stanković, I. M., Niu, S., Hall, M. B., & Zarić, S. D. (2020). Role of aromatic amino acids in amyloid self-assembly. International Journal of Biological Macromolecules, 156, 949-959. https://doi.org/10.1016/j.ijbiomac.2020.03.064

Sternke-Hoffmann, R., Peduzzo, A., Bolakhrif, N., Haas, R., & Buell, A. K. (2020). The Aggregation Conditions Define Whether EGCG is an Inhibitor or Enhancer of α-Synuclein Amyloid Fibril Formation. International Journal of Molecular Sciences, 21(6). https://doi.org/10.3390/ijms21061995

Taylor, A. I. P., & Staniforth, R. A. (2022). General Principles Underpinning Amyloid Structure. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.878869

Thapliyal, S., Singh, T., Handu, S., Bisht, M., Kumari, P., Arya, P., Srivastava, P., & Gandham, R. (2021). A Review on Potential Footprints of Ferulic Acid for Treatment of Neurological Disorders. Neurochemical Research, 46(5), 1043-1057. https://doi.org/10.1007/s11064-021-03257-6

Tzioras, M., McGeachan, R. I., Durrant, C. S., & Spires-Jones, T. L. (2022). Synaptic degeneration in Alzheimer disease. Nature Reviews Neurology, 19(1), 19-38. https://doi.org/10.1038/s41582-022-00749-z

Uddin, M. S., Al Mamun, A., Kabir, M. T., Ashraf, G. M., Bin-Jumah, M. N., & Abdel-Daim, M. M. (2020). Multi-Target Drug Candidates for Multifactorial Alzheimer’s Disease: AChE and NMDAR as Molecular Targets. Molecular Neurobiology, 58(1), 281-303. https://doi.org/10.1007/s12035-020-02116-9

Viola, K. L., & Klein, W. L. (2015). Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathologica, 129(2), 183-206. https://doi.org/10.1007/s00401-015-1386-3

Volynsky, P. E., Urban, A. S., Pavlov, K. V., Bershatsky, Y. V., Bocharova, O. V., Kryuchkova, A. K., Zlobina, V. V., Gavrilenkova, A. A., Dolotova, S. M., Kamynina, A. V., Zangieva, O. T., Taldaev, A., Batishchev, O. V., Okhrimenko, I. S., Rakitina, T. V., Efremov, R. G., & Bocharov, E. V. (2025). Diverse Interactions of Sterols with Amyloid Precursor Protein Transmembrane Domain Can Shift Distribution Between Alternative Amyloid-β Production Cascades in Manner Dependent on Local Lipid Environment. International Journal of Molecular Sciences, 26(2). https://doi.org/10.3390/ijms26020553

Wang, C., Wang, X., Chan, H. N., Liu, G., Wang, Z., Li, H. W., & Wong, M. S. (2020). Amyloid‐β Oligomer‐Targeted Gadolinium‐Based NIR/MR Dual‐Modal Theranostic Nanoprobe for Alzheimer’s Disease. Advanced Functional Materials, 30(16). https://doi.org/10.1002/adfm.201909529

Wegmann, S., Eftekharzadeh, B., Tepper, K., Zoltowska, K. M., Bennett, R. E., Dujardin, S., Laskowski, P. R., MacKenzie, D., Kamath, T., Commins, C., Vanderburg, C., Roe, A. D., Fan, Z., Molliex, A. M., Hernandez‐Vega, A., Muller, D., Hyman, A. A., Mandelkow, E., Taylor, J. P., & Hyman, B. T. (2018). Tau protein liquid–liquid phase separation can initiate tau aggregation. The EMBO Journal, 37(7). https://doi.org/10.15252/embj.201798049

Wu, Y., Guo, S., Wang, K., & Kang, J. (2023). The interaction of peptide inhibitors and Aβ protein: Binding mode analysis, inhibition of the formation of Aβ aggregates, and then exert neuroprotective effects. Frontiers in Aging Neuroscience, 15. https://doi.org/10.3389/fnagi.2023.1139418

Yang, D., Zhu, W., Wang, Y., Tan, F., Ma, Z., Gao, J., & Lin, X. (2020). Selection of mutant µplasmin for amyloid-β cleavage in vivo. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-69079-8

Zbinden, A., Pérez-Berlanga, M., De Rossi, P., & Polymenidou, M. (2020). Phase Separation and Neurodegenerative Diseases: A Disturbance in the Force. Developmental Cell, 55(1), 45-68. https://doi.org/10.1016/j.devcel.2020.09.014

Zeng, M., Shang, Y., Araki, Y., Guo, T., Huganir, R. L., & Zhang, M. (2016). Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity. Cell, 166(5), 1163-1175.e1112. https://doi.org/10.1016/j.cell.2016.07.008

Žerovnik, E., & Venko, K. (2023). Protein Condensates and Protein Aggregates: In Vitro, in the Cell, and In Silico. Frontiers in Bioscience-Landmark, 28(8). https://doi.org/10.31083/j.fbl2808183

Zhang, W., Gao, G., Ma, Z., Luo, Z., He, M., & Sun, T. (2020). Au23(CR)14 nanocluster restores fibril Aβ’s unfolded state with abolished cytotoxicity and dissolves endogenous Aβ plaques. National Science Review, 7(4), 763-774. https://doi.org/10.1093/nsr/nwz215

Zhou, X., Venigalla, M., Raju, R., & Münch, G. (2022). Pharmacological considerations for treating neuroinflammation with curcumin in Alzheimer’s disease. Journal of Neural Transmission, 129(5-6), 755-771. https://doi.org/10.1007/s00702-022-02480-x

Żukowska, J., Moss, S. J., Subramanian, V., & Acharya, K. R. (2023). Molecular basis of selective amyloid‐β degrading enzymes in Alzheimer’s disease. The FEBS Journal, 291(14), 2999-3029. https://doi.org/10.1111/febs.16939

Downloads

Published

2025-06-15

How to Cite

Jehangir, M., Muhammad, S., Tayyab, M., Ali, W., Alvi, A. D., & Naveed, M. (2025). Chemical Modulation of Amyloid Beta Oligomer’s in Alzheimer’s Disease. American Journal of Chemistry and Pharmacy, 4(1), 16–28. https://doi.org/10.54536/ajcp.v4i1.4886