Proposition of Optimization of the Meetinthemiddle Protocol for Quantum Repeaters

Authors

  • Achraf Abdelghafour Zemate Laboratory of Materials Physics and Subatomic, Department of Physics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco

DOI:

https://doi.org/10.54536/ajise.v3i3.3247

Keywords:

Protocol for Quantum Repeater, Quantum Communication, Quantum Repeater, Quantum Entanglement, Quantum Key Distribution

Abstract

Quantum computing relies on concepts derived from classical information theory and quantum physics. In order for quantum communications to be a reality, it is essential to have the most advanced infrastructures in place. In this paper, we explore the significance of quantum communication and the utilization of quantum repeaters, which rely on the phenomenon of quantum entanglement. We present the MeetInTheMiddle protocol for quantum repeaters and its total transmission probability, and then propose an improvement of this protocol based on the comparison of the total transmission probability.

Downloads

Download data is not yet available.

References

Azuma, K., Tamaki, K., & Lo, H.-K. (2015). All-photonic quantum repeaters. Nature Communications, 6(1), 6787. https://doi.org/10.1038/ncomms7787

Barbeau, M. (2019). Protection of Quantum Data Communications. Digitale Welt, 3(2), 46–49. https://doi.org/10.1007/s42354-019-0169-8

Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., & Wootters, W. K. (1993). Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70(13), 1895–1899. https://doi.org/10.1103/PhysRevLett.70.1895

Briegel, H.-J., Dür, W., Cirac, J. I., & Zoller, P. (1998). Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication. Physical Review Letters, 81(26), 5932–5935. https://doi.org/10.1103/PhysRevLett.81.5932

Browne, D. E., Plenio, M. B., & Huelga, S. F. (2003). Robust Creation of Entanglement between Ions in Spatially Separate Cavities. Physical Review Letters, 91(6), 067901. https://doi.org/10.1103/PhysRevLett.91.067901

Cirac, J. I., Zoller, P., Kimble, H. J., & Mabuchi, H. (1997). Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network. Physical Review Letters, 78(16), 3221–3224. https://doi.org/10.1103/PhysRevLett.78.3221

Duan, L.-M., & Kimble, H. J. (2003). Efficient Engineering of Multiatom Entanglement through Single-Photon Detections. Physical Review Letters, 90(25), 253601. https://doi.org/10.1103/PhysRevLett.90.253601

Duan, L.-M., Lukin, M., Cirac, I., & Zoller, P. (2001). Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414(6862), 413–418. https://doi.org/10.1038/35106500

Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67(6), 661–663. https://doi.org/10.1103/PhysRevLett.67.661

Feng, X.-L., Zhang, Z.-M., Li, X.-D., Gong, S.-Q., & Xu, Z.-Z. (2003). Entangling Distant Atoms by Interference of Polarized Photons. Physical Review Letters, 90(21), 217902. https://doi.org/10.1103/PhysRevLett.90.217902

Jiang, L., Taylor, J. M., Khaneja, N., & Lukin, M. D. (2007). Optimization of Quantum Repeater Protocols.

Jones, C., Kim, D., Rakher, M. T., Kwiat, P. G., & Ladd, T. D. (2016). Design and analysis of communication protocols for quantum repeater networks. New Journal of Physics, 18(8), 083015. https://doi.org/10.1088/1367-2630/18/8/083015

Liorni, C., Kampermann, H., & Bruss, D. (2021). Quantum repeaters in space. New Journal of Physics, 23(5), 053021. https://doi.org/10.1088/1367-2630/abfa63

Liu, J.-X., Ye, J.-Y., Yan, L.-L., Su, S.-L., & Feng, M. (2020). Distributed quantum information processing via single atom driving. Journal of Physics B: Atomic, Molecular and Optical Physics, 53(3), 035503. https://doi.org/10.1088/1361-6455/ab58f6

Simon, C., & Irvine, W. T. M. (2003). Robust Long-Distance Entanglement and a Loophole-Free Bell Test with Ions and Photons. Physical Review Letters, 91(11), 110405. https://doi.org/10.1103/PhysRevLett.91.110405

Valivarthi, R., Lucio-Martinez, I., Rubenok, A., Chan, P., Marsili, F., Verma, V. B., Shaw, M. D., Stern, J. A., Slater, J. A., Oblak, D., Nam, S. W., & Tittel, W. (2014). Efficient Bell state analyzer for time-bin qubits with fast-recovery WSi superconducting single photon detectors. Optics Express, 22(20), 24497. https://doi.org/10.1364/OE.22.024497

Yoshida, D., Niizeki, K., Tamura, S., & Horikiri, T. (2020). Entanglement distribution between quantum repeater nodes with an absorptive type memory. International Journal of Quantum Information, 18(05), 2050026. https://doi.org/10.1142/S0219749920500264

Downloads

Published

2024-09-18

How to Cite

Zemate, A. A. (2024). Proposition of Optimization of the Meetinthemiddle Protocol for Quantum Repeaters. American Journal of Innovation in Science and Engineering, 3(3), 16–18. https://doi.org/10.54536/ajise.v3i3.3247