Proposition of Optimization of the Meetinthemiddle Protocol for Quantum Repeaters
DOI:
https://doi.org/10.54536/ajise.v3i3.3247Keywords:
Protocol for Quantum Repeater, Quantum Communication, Quantum Repeater, Quantum Entanglement, Quantum Key DistributionAbstract
Quantum computing relies on concepts derived from classical information theory and quantum physics. In order for quantum communications to be a reality, it is essential to have the most advanced infrastructures in place. In this paper, we explore the significance of quantum communication and the utilization of quantum repeaters, which rely on the phenomenon of quantum entanglement. We present the MeetInTheMiddle protocol for quantum repeaters and its total transmission probability, and then propose an improvement of this protocol based on the comparison of the total transmission probability.
Downloads
References
Azuma, K., Tamaki, K., & Lo, H.-K. (2015). All-photonic quantum repeaters. Nature Communications, 6(1), 6787. https://doi.org/10.1038/ncomms7787
Barbeau, M. (2019). Protection of Quantum Data Communications. Digitale Welt, 3(2), 46–49. https://doi.org/10.1007/s42354-019-0169-8
Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., & Wootters, W. K. (1993). Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70(13), 1895–1899. https://doi.org/10.1103/PhysRevLett.70.1895
Briegel, H.-J., Dür, W., Cirac, J. I., & Zoller, P. (1998). Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication. Physical Review Letters, 81(26), 5932–5935. https://doi.org/10.1103/PhysRevLett.81.5932
Browne, D. E., Plenio, M. B., & Huelga, S. F. (2003). Robust Creation of Entanglement between Ions in Spatially Separate Cavities. Physical Review Letters, 91(6), 067901. https://doi.org/10.1103/PhysRevLett.91.067901
Cirac, J. I., Zoller, P., Kimble, H. J., & Mabuchi, H. (1997). Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network. Physical Review Letters, 78(16), 3221–3224. https://doi.org/10.1103/PhysRevLett.78.3221
Duan, L.-M., & Kimble, H. J. (2003). Efficient Engineering of Multiatom Entanglement through Single-Photon Detections. Physical Review Letters, 90(25), 253601. https://doi.org/10.1103/PhysRevLett.90.253601
Duan, L.-M., Lukin, M., Cirac, I., & Zoller, P. (2001). Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414(6862), 413–418. https://doi.org/10.1038/35106500
Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67(6), 661–663. https://doi.org/10.1103/PhysRevLett.67.661
Feng, X.-L., Zhang, Z.-M., Li, X.-D., Gong, S.-Q., & Xu, Z.-Z. (2003). Entangling Distant Atoms by Interference of Polarized Photons. Physical Review Letters, 90(21), 217902. https://doi.org/10.1103/PhysRevLett.90.217902
Jiang, L., Taylor, J. M., Khaneja, N., & Lukin, M. D. (2007). Optimization of Quantum Repeater Protocols.
Jones, C., Kim, D., Rakher, M. T., Kwiat, P. G., & Ladd, T. D. (2016). Design and analysis of communication protocols for quantum repeater networks. New Journal of Physics, 18(8), 083015. https://doi.org/10.1088/1367-2630/18/8/083015
Liorni, C., Kampermann, H., & Bruss, D. (2021). Quantum repeaters in space. New Journal of Physics, 23(5), 053021. https://doi.org/10.1088/1367-2630/abfa63
Liu, J.-X., Ye, J.-Y., Yan, L.-L., Su, S.-L., & Feng, M. (2020). Distributed quantum information processing via single atom driving. Journal of Physics B: Atomic, Molecular and Optical Physics, 53(3), 035503. https://doi.org/10.1088/1361-6455/ab58f6
Simon, C., & Irvine, W. T. M. (2003). Robust Long-Distance Entanglement and a Loophole-Free Bell Test with Ions and Photons. Physical Review Letters, 91(11), 110405. https://doi.org/10.1103/PhysRevLett.91.110405
Valivarthi, R., Lucio-Martinez, I., Rubenok, A., Chan, P., Marsili, F., Verma, V. B., Shaw, M. D., Stern, J. A., Slater, J. A., Oblak, D., Nam, S. W., & Tittel, W. (2014). Efficient Bell state analyzer for time-bin qubits with fast-recovery WSi superconducting single photon detectors. Optics Express, 22(20), 24497. https://doi.org/10.1364/OE.22.024497
Yoshida, D., Niizeki, K., Tamura, S., & Horikiri, T. (2020). Entanglement distribution between quantum repeater nodes with an absorptive type memory. International Journal of Quantum Information, 18(05), 2050026. https://doi.org/10.1142/S0219749920500264
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Achraf Abdelghafour Zemate

This work is licensed under a Creative Commons Attribution 4.0 International License.