Plant Design for the Production of Propylene Oxide by Isopropylbenzene 2-phenylpropane, or (1-Methylethyl) Benzene (Cumene)
DOI:
https://doi.org/10.54536/ajise.v3i3.3419Keywords:
Conversion/Selectivity Attitude, Chemical Process Simulation, Continuous Stirred-Tank Reactor (CSTR) Cascade, Total Annual Cost (TAC), Cumene To Cumene Hydroperoxide (CHP), Total Annual Cost ( TAC)Abstract
Cumene is a colorless, volatile liquid with a gasoline-like odor. It’s also known as isopropylbenzene, 2-phenylpropane, or (1-methylethyl) benzene. It’s a natural component of coal tar and crude oil, and it can also be employed in gasoline as a blending component. Cumene hydroperoxide is produced by oxidizing cumene with benzene and propylene in the presence of air. As a result, the cumene hydroperoxide is changed to cumyl alcohol, which is then transformed to propylene without the use of oxygen. Propylene oxide is an organic compound produced through various methods such as the cumene process and the hydroperoxide process. The cumene method is preferred due to its low by-product production and high market value of co-products. The reactive distillation process is a feasible method for producing propylene oxide with high purity and reduced costs. Future work includes optimizing processes, developing new catalysts, and improving efficiency. Propylene oxide has practical applications in the production of polyurethane foams, coatings, adhesives, polyether polyols, and propylene glycols.
Downloads
References
Al-Zamil Company. (2001). Propylene sources sheet in propane-propylene based industries in Saudi Arabia (Propylene by propane dehydrogenation) - Feasibility study. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 45(1), 49-63.
Boccuti, M. R., Rao, K. M., Zecchina, A., Leofanti, G., & Petrini, G. (1989). Spectroscopic characterization of silicalite and titanium silicalite. In C. Morterra et al. (Eds.), Stud. Surf. Sci. Catal. (Vol. 48, p. 133). Elsevier.
Chen, Q., & Beckman, E. J. (2008). Green Chemistry, 10(9), 934.
Clerici, M. G., & Ingallina, P. (1993). Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite. J. Catal., 140, 71.
Dhananjay, P. S., Sooryakant, G. H., & Dongare, M. K. (2000). Low-Cost Synthesis of Bimodal Mesoporous Silica-Based Materials by Pseudomorphic Transformation. Journal of Materials Chemistry, 82, 631. https://doi.org/10.1002/cplu.201402383.
EP1681288A1. (2004). Process for producing propylene oxide. Sumitomo Chemical Company, Limited, Tokyo, Japan.
Esposito, A., Neri, C., & Buonomo, F. (1984). Process for oxidizing alcohols to aldehydes and/or ketones. US patent, 4,480,135.
Glover, (2007). Light olefin technologies. In UOP LLC; Journées Annuelles du Pétrole.
GS Engineering/Construction (Ed.). (2008). Propylene technology by PDH & metathesis.
Huybrechts, D. R. C., Buskens, P. L., & Jacobs, P. A. (1992). Physicochemical and catalytic properties of titanium silicalites. J. Mol. Catal., 71, 129.
Huybrechts, D. R. C., De Bruycker, L., & Jacobs, P. A. (1990). Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite. Nature, 345, 240.
Huybrechts, D. R. C., Vaesen, I., Li, H. X., & Jacobs, P. A. (1991). Factors influencing the catalytic activity of titanium silicalites in selective oxidations. Catal. Lett., 8, 237.
“Cumene”. (n.d.). Immediately Dangerous to Life and Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
“NIOSH Pocket Guide to Chemical Hazards”. (n.d.). “#0159”. National Institute for Occupational Safety and Health (NIOSH).
Kraushaar, B., & van Hooff, J. H. C. (1988). A new method for the preparation of titanium-silicalite (TS-1). Catal. Lett., 1, 81.
Kraushaar, B., & van Hooff, J. H. C. (1989). A test reaction for titanium silicalite catalysts. Catal. Lett., 2, 43.
Lee, J. H., Jung, K. T., & Shul, Y. G. (1996). Synthesis of nanosized titanium silicalite-1. HWAHAK KONGHAK, 34(6), 765.
Market Study Benzene. (2011, July). Published by Ceresana.
Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 (Blue Book). (2014). Cambridge: The Royal Society of Chemistry. https://doi.org/10.1039/9781849733069-FP001
Notari, B. (1993). Titanium silicalites. Catal. Today, 18, 163.
Oyama, S. Ted. (2008). Mechanisms in homogeneous and heterogeneous epoxidation catalysis. Virginia, USA: Elsevier.
Padovan, M., Genoni, F., Leofanti, G., Petrini, G., Trezza, G., & Zecchina, A. (1991). Study on titanium silicate synthesis. In G. Poncelet, P. A. Jacobs, P. Grange, & B. Delmon (Eds.), Stud. Surf. Sci. Catal. (Vol. 63, p. 431). Elsevier.
Perez Ferrandez, D. M. (2015). Alternatives for the production of propene oxide. Eindhoven: Eindhoven University of Technology.
Samanta. (2008). Applied Catalysis A: General, 350(2), 133-149.
Shannon, S., Stahl, & Alsters, P. L. (2016). Liquid phase aerobic oxidation catalysis. Wiley-VCH. Weinheim, Germany.
Simmrock , K. H. (1978). Hydrocarbon Process., 57(11), 105-113.
Sumitomo Chemical. (2006). Development of new propylene oxide process. Japan.
Tatsumi, T., Nakamura, M., Negishi, S., & Tominaga, H. (1990). Shape selective oxidation of alkanes with H2O2 catalysed by titanosilicate. J. Chem. Soc., Chem. Commun., 476.
Trong On, D., Bonneviot, L., Bittar, A., Sayari, A., & Kaliaguine, S. (1992). Titanium sites in titanium silicalites: An XPS, XANES and EXAFS study. J. Mol. Catal., 74, 233.
Tuel, A., Diab, J., Gelin, P., Dufaux, M., Dutel, J.-F., & Taarit, Y. B. (1990). EPR evidence for the isomorphous substitution of titanium in silicalite structure. J. Mol. Catal., 63, 95.
U.S. Patent No. 3,351,635. (1967, November 7). J. Kollar (to Halcon International, Inc.).
U.S. Patent No. 4,128,587. (1978, December 5). J. C. Jubin (to Atlantic Richfield Co.).
van der Pol, A. J. H. P., & van Hooff, J. H. C. (1993) . Oxidation of linear alcohols with hydrogen peroxide over titanium silicalite 1. Appl. Catal. A: General, 106, 97.
van der Pol, A. J. H. P., Verduyn, A. J., & van Hooff, J. H. C. (1992). Oxidation of linear alcohols with hydrogen peroxide over titanium silicalite 1. Appl. Catal., 92, 113.
Won, W., Lee, K. S., Lee, S., & Jung, C. (2009). Repetitive control and online optimization of Catofin propane process. In IFAC Proceedings Volumes (IFAC-PapersOnline) (Vol. 7, No. PART 1, pp. 273–278).
WO2005005402A2. (2004). Process for producing alkylene oxide. Shell Internationale Research Maatschappij B.V.
Yong Sig Ko, & Wha Seung Ahn. (1998). Korean Journal of Chemical Engineering, 15(2), 182-191.
Zecchina, A., Spoto, G., Bordiga, S., Ferrero, A., Petrini, G., Leofanti, G., & Padovan, M. (1991). Framework and extraframework Ti in titanium-silicalite: Investigation by means of physical methods. In P. A. Jacobs, N. I. Jaeger, L. Kubelkova, & B. Wichterlova (Eds.), Zeolite Chemistry and Catalysis (p. 251). Elsevier.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Daniel Asiedu, Clara Afia Amoah Dankwa

This work is licensed under a Creative Commons Attribution 4.0 International License.