Next-Generation Solar Cells: Advancements in Materials, Architectures, and System Integration for A Sustainable Energy Future.
DOI:
https://doi.org/10.54536/ajise.v4i2.3832Keywords:
Multi-Junction Solar Cells, Next-Generation Solar Cells, Organic Solar Cells, Perovskite Solar Cells, Quantum Dot Solar Cells, Solar Cell Efficiency, System Integration, Tandem Solar CellsAbstract
The progress of durable solar renewable energy depends on developments in solar cell technology. Current market trends are predominantly focused on crystalline silicon-based solar cells; nevertheless, the pursuit of enhanced efficiency and cost reduction generates considerable interest in investigating other materials and device architectures. This paper provides a review of the next generation of solar cells; perovskite materials, organic polymers, and quantum dots are evaluated regarding their potential as low-cost efficiency photovoltaic systems. I cross into more recent device architectures, including tandems and multi-junctions, as well as cost reduction strategies across the solar cell value chain. Here, I also explore the issues and opportunities presented by these new technologies, underscoring that progress in materials science, device design, and system integration will be crucial to realizing a global clean energy future. In this overview, the future of solar cell research and development is addressed coherently, opening possibilities for widespread adaptation of solar energy and shifting towards a sustainable energy landscape.
Downloads
References
Sabina Abdul Hadi; Eugene A. Fitzgerald; Steven Griffiths; Ammar Nayfeh III-V/Si dual junction solar cell at scale: Manufacturing cost estimates for step-cell based technology. https://pubs.aip.org/jrse/article/10/1/015905/285790/III-V-Si-dual-junction-solar-cell-at-scale
Rong, Y., Hu, Y., Mei, A., Tan, H., Saidaminov, M. I., Seok, S. I., McGehee, M. D., Sargent, E. H., & Han, H. (2018). Challenges for commercializing perovskite solar cells. Science. https://doi.org/aat8235
Binetti, S. (2010, September 1). Silicon-based solar cells: Research progress and future perspectives. https://doi.org/10.1109/group4.2010.5643385
Blanco, C F., Cucurachi, S., Dimroth, F., Guinée, J B., Peijnenburg, W J., & Vijver, M G. (2020, January 1). Environmental impacts of III–V/silicon photovoltaics: life cycle assessment and guidance for sustainable manufacturing. Royal Society of Chemistry, 13(11), 4280-4290. https://doi.org/10.1039/d0ee01039a
Mee Rahn Kim and Dongling Ma, “Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges.. https://pubs.acs.org/doi/10.1021/jz502227h
Castellanos, S., Sunter, D A., & Kammen, D M. (2021, January 1). Exploring rooftop solar photovoltaics deployment and energy injustice in the U.S. through a data-driven approach. Elsevier BV, 109-128. https://doi.org/10.1016/b978-0-12-817976-5.00007-3
Conibeer, G., Perez Würfl, I., Hao, X., Di, D., & Lin, D. (2012, March 21). Si solid-state quantum dot-based materials for tandem solar cells. Springer Science+Business Media, 7(1)
Nayak, P. K., Mahesh, S., Snaith, H. J., & Cohen, D. (2019). Photovoltaic solar cell technologies: Analysing the state of the art. Nature Reviews Materials, 4(4), 269-285. https://doi.org/10.1038/s41578-019-0097-0
Fang, Z Z., & Sun, P. (2012, August 1). Pathways to Optimize Performance/Cost Ratio of Powder Metallurgy Titanium – A Perspective. Trans Tech Publications, 520, 15-23. https://doi.org/10.4028/www.scientific.net/kem.520.15
Ferrari, S., Falco, M., Muñoz García, A B., Bonomo, M., Brutti, S., Pavone, M., & Gerbaldi, C. (2021, June 1). Solid State Post Li Metal Ion Batteries: A Sustainable Forthcoming Reality. Wiley, 11(43)
Fraleoni Morgera, A., & Lughi, V. (2015, June 1). Frontiers of photovoltaic technology: A review. , 809, 115-121. https://doi.org/10.1109/iccep.2015.7177610
Fthenakis, V. (2012, April 1). Sustainability metrics for extending thin-film photovoltaics to terawatt levels. Springer Nature, 37(4), 425-430. https://doi.org/10.1557/mrs.2012.50
Yaoguang Rong et al., Challenges for commercializing perovskite solar cells.Science361,eaat8235(2018).DOI:10.1126/science.aat8235
Hermawan, E., Wijono, R A., Adiarso, A., Setiadi, E D., Hidayati, N A., Setiadi, S., Setiawan, H., Ferabianie, A L., Dewi, Y R., & Fatmakartika, O. (2023, November 10). Solar Cell Manufacturing Cost Analysis and its Impact on Solar Power Electricity Price in Indonesia. EconJournals, 13(6), 244-258. https://doi.org/10.32479/ijeep.14970
Hernandez, R R., Armstrong, A., Burney, J., Ryan, G., Moore O’Leary, K A., Diédhiou, I., Grodsky, S M., Saul-Gershenz, L., Davis, R J., Macknick, J., Mulvaney, D., Heath, G., Easter, S B., Hoffacker, M K., Allen, M F., & Kammen, D M. (2019, July 9). Techno–ecological synergies of solar energy for global sustainability. Nature Portfolio, 2(7), 560-568. https://doi.org/10.1038/s41893-019-0309-z
Kim, M R., & Ma, D. (2014, December 11). Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges. American Chemical Society, 6(1), 85-99. https://doi.org/10.1021/jz502227h
Kini, G P., Jeon, S J., & Moon, D K. (2021, January 18). Latest Progress on Photoabsorbent Materials for Multifunctional Semitransparent Organic Solar Cells. Wiley, 31(15)
Lewis, N S. (2016, January 21). Research opportunities to advance solar energy utilization. American Association for the Advancement of Science, 351(6271). https://doi.org/10.1126/science.aad1920
Xiaoli Zhao, Chengjie Xiang, Ming Huang, Mei Ding, Chuankun Jia, Chuankun Jia, Lidong Sun, Lidong Sun “Quantum Dot Solar Cells.” https://onlinelibrary.wiley.com/doi/10.1002/9781119407690.ch16
M.D. Udayakumar, G. Anushree, J. Sathyaraj, A. Manjunathan, The impact of advanced technological developments on solar P.V. value chain, Materials Today: Proceedings, Volume 45, Part 2,2021, Pages 2053-2058, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.09.588.
Motlan, M., & Siregar, N. (2021, April 25). The efficiency of natural dyes-based dye-sensitized solar cells. Penerbit Universiti Sains Malaysia, 32(1), 57-68. https://doi.org/10.21315/jps2021.32.1.5
Next-Generation Solar Cell Market Size, Share, Industry Report, Revenue Trends, and Growth Drivers, 2030. (2023, October 1). https://www.marketsandmarkets.com/Market-Reports/next-generation-solar-cell-market-94742566.html
Olaoye, G., & Akinyele, D. (2024, July 1). Design and Optimization of Off-Grid Solar Power Systems for Rural Electrification
Olatomiwa, L., Mekhilef, S., Ismail, M., & Moghavvemi, M. (2016, May 17). Energy management strategies in hybrid renewable energy systems: A review. Elsevier BV, 62, 821-835. https://doi.org/10.1016/j.rser.2016.05.040
Phillips, J. (2013, August 1). Determining the sustainability of large-scale photovoltaic solar power plants. Elsevier BV, 27, 435-444. https://doi.org/10.1016/j.rser.2013.07.003
Ramousse, S., Menon, M., Brodersen, K., Knudsen, J., Rahbek, U., & Larsen, P H. (2007, May 25). Manufacturing of Anode-Supported SOFCs: Processing Parameters and their Influence. Institute of Physics, 7(1), 317-327. https://doi.org/10.1149/1.2729107
Rocha, C., Radatz, P., & Kagan, N. (2018, May 1). Voltage regulators operational stress analysis and reduction in distribution systems with distributed generation. https://doi.org/10.1109/sbse.2018.8395806
Rohatgi, A. (1985, August 9). High-Efficiency Silicon Solar Cells Opportunity And Challenge. SPIE. https://doi.org/10.1117/12.948191
J. Morris, K. Calhoun, J. Goodman, and D. Seif, “Reducing solar P.V. soft costs: A focus on installation labor,” 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 2014, pp. 3356-3361, doi: 10.1109/PVSC.2014.6925654.
G. Bedi and R. Singh, “Quantum dot solar cells,” 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO), Pittsburgh, PA, USA, 2017, pp. 225-229, doi: 10.1109/NANO.2017.8117469.
Polman, A., Knight, M., Garnett, E. C., Ehrler, B., & Sinke, W. C. (2016). Photovoltaic materials: Present efficiencies and future challenges. Science. https://doi.org/aad4424
IEA (2022), Special Report on Solar P.V. Global Supply Chains, OECD Publishing, Paris, https://doi.org/10.1787/9e8b0121-en.
Scott Paap; Vipin Gupta; Anna Tauke-Pedretti; Paul Resnick; Carlos Sanchez; Gregory Nielson “Cost analysis of flat-plate concentrators employing microscale photovoltaic cells for high energy per unit area applications.” https://ieeexplore.ieee.org/document/6925544/DOI: 10.1109/PVSC.2014.6925544
Ukoba, K., Yoro, K O., Eterigho-Ikelegbe, O., Ibegbulam, C., & Jen, T. (2024, March 16). Adaptation of solar energy in the Global South: Prospects, challenges and opportunities. Elsevier BV, 10(7), e28009-e28009. https://doi.org/10.1016/j.heliyon.2024.e28009
Victoria, M., Haegel, N M., Peters, I M., Sinton, R., Jäger Waldau, A., Cañizo, C D., Breyer, C., Stocks, M., Blakers, A., Kaizuka, I., Komoto, K., & Smets, A H M. (2021, March 29). Solar photovoltaics is ready to power a sustainable future. Elsevier BV, 5(5), 1041-1056
Stephen Forrest, Peter A. Franken, “Organic photovoltaics can potentially cut way down on the total solar energy system cost, making solar a truly ubiquitous clean energy source.” https://news.engin.umich.edu/2018/04/organic-solar-cells-reach-record-efficiency-benchmark-for-commercialization/
Xue, T., Li, T., Chen, D., Wang, X., Guo, K., Wang, Q., & Zhang, F. (2023, August 1). Preparation of TiO2/SnO2 Electron Transport Layer for Performance Enhancement of All-Inorganic Perovskite Solar Cells Using Electron Beam Evaporation at Low Temperature. Multidisciplinary Digital Publishing Institute, 14(8), 1549-1549. https://doi.org/10.3390/mi14081549
Yesel, B K., Eslinger, J J., Nord, M E., Selvaraj, D F., & Ranganathan, P. (2019, October 1). Feasibility Study of Solar Energy System at the University of North Dakota. https://doi.org/10.1109/naps46351.2019.9000206
Yudiartono, Y., Windarta, J., & Adiarso, A. (2023, February 8). Sustainable Long-Term Energy Supply and Demand: The Gradual Transition to a New and Renewable Energy System in Indonesia by 2050. Diponegoro University, 12(2), 419-429. https://doi.org/10.14710/ijred.2023.50361
Zhao, H., & Rosei, F. (2017, August 1). Colloidal Quantum Dots for Solar Technologies. Elsevier BV, 3(2), 229-258. https://doi.org/10.1016/j.chempr.2017.07.007
Batmunkh, Munkhbayar & Shearer, Cameron & Biggs, Mark & Shapter, Joe. (2015). Nanocarbons for Mesoscopic Perovskite Solar Cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability. 10.1039/C5TA00873E.
Takeo Oku, Chapter 17 - Fullerene-based solar cells, Editor(s): Sabu Thomas, El Hadji Mamour Sakho, Nandakumar Kalarikkal, Samuel Oluwatobi Oluwafemi, Jihuai Wu, Nanomaterials for Solar Cell Applications, Elsevier,2019,Pages 661-698,ISBN 9780128133378,https://doi.org/10.1016/B978-0-12-813337-8.00017-5.
Jun, Hk & Thanh Tung, Ha. (2022). A Short Overview on Recent Progress in Semiconductor Quantum Dot-Sensitized Solar Cells. Journal of Nanomaterials. 2022. 1-7. https://doi.org/10.1155/2022/1382580.
Mohamad Firdaus, Mohamad Noh, Nurul Affiqah Arzaee, Chau Chien Fat, Tiong Sieh Kiong, Mohd Asri Mat Teridi, Ahmad Wafi Mahmood Zuhdi, Perovskite/CIGS tandem solar cells: progressive advances from technical perspectives, Materials Today Energy,Volume 39,2024,101473,ISSN 2468-6069,https://doi.org/10.1016/j.mtener.2023.101473.
Fatma Ezzahra Cherif, Habib Sammouda, Optoelectronic simulation and optimization of tandem and multi-junction perovskite solar cells using concentrating photovoltaic systems, Energy Reports,Volume 7,2021,Pages 5895-5908,ISSN 2352-4847,https://doi.org/10.1016/j.egyr.2021.09.014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Asadullah Muhammad Hossain Saad

This work is licensed under a Creative Commons Attribution 4.0 International License.