The Current Landscape of AI Application in Healthcare: A Review

Authors

  • Gbenga Alex Ajimatanrareje Department of Data Science and AI, Bournemouth University, United Kingdom https://orcid.org/0009-0008-8451-0310
  • Chikodi Ekeh Department of Data Science and AI, Bournemouth University, United Kingdom
  • Samuel Igwilo Department of Data Science and AI, Bournemouth University, United Kingdom
  • Chisom Osunkwo Department of Data Science and AI, Bournemouth University, United Kingdom

DOI:

https://doi.org/10.54536/ajise.v4i2.4432

Keywords:

Artificial Intelligence (AI), Disease Diagnosis, Drug Discovery, Healthcare, Precision Medicine

Abstract

The evolution of Artificial Intelligence (AI) in healthcare presents a unique blend of opportunities and challenges, particularly in enhancing healthcare delivery across important healthcare domains. These developments makes this review an interesting one as it explores AI’s capacity to improve healthcare by making processes like drug discovery faster and more cost-effective, enabling early disease detection, tailoring healthcare to individual patient needs and continuous health monitoring. The paper examines the diverse applications of AI tools in healthcare across five (5) key domains (disease diagnosis and prognosis, drug discovery, precision medicine, clinical decision support, and smart wearables), highlighting their role in improving diagnostic accuracy, personalising treatment plans, aiding in medical decision-making, forecasting patient health trends and facilitating continuous patient monitoring. The insights from this review lead to a balanced perspective on AI’s role in healthcare, emphasising the importance of adopting AI in a patient centric and ethically responsible manner while navigating the challenges that comes with it.

Downloads

Download data is not yet available.

References

Ajimatanrareje, G. A. (2024). Advancing E-Voting Security: Biometrics-Enhanced Blockchain for Privacy and VerifiAbility (BEBPV). American Journal of Innovation in Science and Engineering, 3(3), 88–93. https://doi.org/10.54536/ajise.v3i3.3876

Al-Safarini, M. Y., & El-Sayed, H. H. (2021). The role of artificial intelligence in revealing the results of the interaction of biological materials with each other or with chemicals. Materials Today: Proceedings, 45, 4954–4959. https://doi.org/10.1016/j.matpr.2021.01.387

Albizu, A., Fang, R., Indahlastari, A., O’Shea, A., Stolte, S. E., See, K. B., Boutzoukas, E. M., Kraft, J. N., Nissim, N. R., & Woods, A. J. (2020). Machine learning and individual variability in electric field characteristics predict tDCS treatment response. Brain Stimulation, 13(6), 1753–1764. https://doi.org/10.1016/j.brs.2020.10.001

Ali, F., El-Sappagh, S., Islam, S. M. R., Ali, A., Attique, M., Imran, M., & Kwak, K.-S. (2021). An intelligent healthcare monitoring framework using wearable sensors and social networking data. Future Generation Computer Systems, 114, 23–43. https://doi.org/10.1016/j.future.2020.07.047

Aljaaf, A. J., Al-Jumeily, D., Hussain, A. J., Fergus, P., Al-Jumaily, M., & Abdel-Aziz, K. (2015). Toward an optimal use of artificial intelligence techniques within a clinical decision support system. IEEE Xplore, 548–554. https://doi.org/10.1109/sai.2015.7237196

Bartlett, E. A., DeLorenzo, C., Sharma, P., Yang, J., Zhang, M., Petkova, E., Weissman, M., McGrath, P. J., Fava, M., Ogden, R. T., Kurian, B. T., Malchow, A., Cooper, C. M., Trombello, J. M., McInnis, M., Adams, P., Oquendo, M. A., Pizzagalli, D. A., Trivedi, M., & Parsey, R. V. (2018). Pretreatment and early-treatment cortical thickness is associated with SSRI treatment response in major depressive disorder. Neuropsychopharmacology, 43(11), 2221–2230. https://doi.org/10.1038/s41386-018-0122-9

Bauer, Z., Dominguez, A., Cruz, E., Gomez-Donoso, F., Orts-Escolano, S., & Cazorla, M. (2020). Enhancing perception for the visually impaired with deep learning techniques and low-cost wearable sensors. Pattern Recognition Letters, 137, 27–36. https://doi.org/10.1016/j.patrec.2019.03.008

Baydoun, M., Safatly, L., Hassan, Ghaziri, H., Hajj, A. E., & Isma’eel, H. (2019). High Precision Digitization of Paper-Based ECG Records: A Step Toward Machine Learning. IEEE Journal of Translational Engineering in Health and Medicine, 7, 1–8. https://doi.org/10.1109/jtehm.2019.2949784

Bayramzadeh, S., & Aghaei, P. (2021). Technology integration in complex healthcare environments: A systematic literature review. Applied Ergonomics, 92, 103351–103351. https://doi.org/10.1016/j.apergo.2020.103351

Bejnordi, B. E., Veta, M., Johannes, P., Ginneken, B. van, Karssemeijer, N., Litjens, G., Hermsen, M., Manson, Q. F., Balkenhol, M., Geessink, O., Stathonikos, N., Dijk, van, Bult, P., Beca, F., Beck, A. H., Wang, D., Khosla, A., Gargeya, R., Irshad, H., & Zhong, A. (2017). Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA, 318(22), 2199–2199. https://doi.org/10.1001/jama.2017.14585

Bentley, P., Ganesalingam, J., Jones, C., Mahady, K., Epton, S., Rinne, P., Sharma, P., Halse, O., Mehta, A., & Rueckert, D. (2014). Prediction of stroke thrombolysis outcome using CT brain machine learning. NeuroImage Clinical, 4, 635–640. https://doi.org/10.1016/j.nicl.2014.02.003

Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V., & Madabhushi, A. (2019). Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nature Reviews Clinical Oncology, 16(11), 703–715. https://doi.org/10.1038/s41571-019-0252-y

Bianchi, M. T. (2018). Sleep devices: wearables and nearables, informational and interventional, consumer and clinical. Metabolism, 84, 99–108. https://doi.org/10.1016/j.metabol.2017.10.008

Bini, S. A. (2018). Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? The Journal of Arthroplasty, 33(8), 2358–2361. https://doi.org/10.1016/j.arth.2018.02.067

Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. Elsevier EBooks, 25–60. https://doi.org/10.1016/b978-0-12-818438-7.00002-2

Chang, A. C. (2016). Big data in medicine: The upcoming artificial intelligence. Progress in Pediatric Cardiology, 43, 91–94. https://doi.org/10.1016/j.ppedcard.2016.08.021

Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., Ferrero, E., Agapow, P.-M., Zietz, M., Hoffman, M. M., Xie, W., Rosen, G. L., Lengerich, B. J., Israeli, J., Lanchantin, J., Woloszynek, S., Carpenter, A. E., Shrikumar, A., Xu, J., & Cofer, E. M. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society Interface, 15(141), 20170387–20170387. https://doi.org/10.1098/rsif.2017.0387

Christie, S. A., Conroy, A. S., Callcut, R. A., Hubbard, A. E., & Cohen, M. J. (2019). Dynamic multi-outcome prediction after injury: Applying adaptive machine learning for precision medicine in trauma. PLoS ONE, 14(4), e0213836–e0213836. https://doi.org/10.1371/journal.pone.0213836

Churpek, M. M., Yuen, T. C., Huber, M. T., Park, S. Y., Hall, J. B., & Edelson, D. P. (2011). Predicting Cardiac Arrest on the Wards. CHEST Journal, 141(5), 1170–1176. https://doi.org/10.1378/chest.11-1301

Cikes, M., Sanchez‐Martinez, S., Claggett, B., Duchateau, N., Piella, G., Butakoff, C., Pouleur, A. C., Knappe, D., Biering-Sørensen, T., Kutyifa, V., Moss, A., Stein, K., Solomon, S. D., & Bijnens, B. (2018). Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. European Journal of Heart Failure, 21(1), 74–85. https://doi.org/10.1002/ejhf.1333

Cui, R., & Zhu, F. (2021). Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends in Food Science & Technology, 107, 491–508. https://doi.org/10.1016/j.tifs.2020.11.018

Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: management, analysis and future prospects. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0217-0

Daynac, M., Cortes-Cabrera, A., & Prieto, J. M. (2015). Application of Artificial Intelligence to the Prediction of the Antimicrobial Activity of Essential Oils. Evidence-Based Complementary and Alternative Medicine, 2015, 1–9. https://doi.org/10.1155/2015/561024

Dekhil, O., Hajjdiab, H., Shalaby, A., Ali, M. T., Ayinde, B., Switala, A., Elshamekh, A., Ghazal, M., Keynton, R., Barnes, G., & El-Baz, A. (2018). Using resting state functional MRI to build a personalized autism diagnosis system. PLoS ONE, 13(10), e0206351–e0206351. https://doi.org/10.1371/journal.pone.0206351

Delpierre, C., & Lefèvre, T. (2023). Precision and personalized medicine: What their current definition says and silences about the model of health they promote. Implication for the development of personalized health. Frontiers in Sociology, 8. https://doi.org/10.3389/fsoc.2023.1112159

Desai, K., Mane, P., Dsilva, M., Zare, A., Shingala, P., & Ambawade, D. (2020). A Novel Machine Learning Based Wearable Belt For Fall Detection. 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON). https://doi.org/10.1109/gucon48875.2020.9231114

Dildar, M., Akram, S., Irfan, M., Khan, H. U., Ramzan, M., Mahmood, A. R., Ayed Alsaiari, S., Hakeem, A., Alraddadi, M. O., & Ayed Alsaiari, S. (2021). Skin Cancer Detection: A Review Using Deep Learning Techniques. International Journal of Environmental Research and Public Health, 18(10), 5479–5479. https://doi.org/10.3390/ijerph18105479

EL-Geneedy, M., Moustafa, H. E.-D., Khalifa, F., Khater, H., & AbdElhalim, E. (2022). An MRI-based deep learning approach for accurate detection of Alzheimer’s disease. Alexandria Engineering Journal, 63, 211–221. https://doi.org/10.1016/j.aej.2022.07.062

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017a). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017b). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056

Esteva, A., & Topol, E. (2019). Can skin cancer diagnosis be transformed by AI? The Lancet, 394(10211), 1795. https://doi.org/10.1016/s0140-6736(19)32726-6

Feng, C., Wang, L., Chen, X., Zhai, Y., Zhu, F., Chen, H., Wang, Y., Su, X., Huang, S., Tian, L., Zhu, W., Sun, W., Zhang, L., Han, Q., Zhang, J., Pan, F., Chen, L., Zhu, Z., Xiao, H., & Liu, Y. (2021). A novel artificial intelligence-assisted triage tool to aid in the diagnosis of suspected COVID-19 pneumonia cases in fever clinics. Annals of Translational Medicine, 9(3), 201–201. https://doi.org/10.21037/atm-20-3073

Ferrario, A., & Loi, M. (2022). How Explainability Contributes to Trust in AI. 2022 ACM Conference on Fairness, Accountability, and Transparency, 1457–1466. https://doi.org/10.1145/3531146.3533202

Gerke, S., Minssen, T., & Cohen, G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. Elsevier EBooks, 295–336. https://doi.org/10.1016/b978-0-12-818438-7.00012-5

Gille, F., Jobin, A., & Ienca, M. (2020). What we talk about when we talk about trust: Theory of trust for AI in healthcare. Intelligence-Based Medicine, 1-2, 100001–100001. https://doi.org/10.1016/j.ibmed.2020.100001

Gomes, J., Ramsundar, B., Feinberg, E. N., & Pande, V. S. (2017). Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity. ArXiv.org. https://doi.org/10.48550/arXiv.1703.10603

Gruson, D., Bernardini, S., Kumar Dabla, P., Gouget, B., & Stankovic, S. (2020). Collaborative AI and Laboratory Medicine integration in precision cardiovascular medicine. Clinica Chimica Acta, 509, 67–71. https://doi.org/10.1016/j.cca.2020.06.001

Hamid Shamszare, & Choudhury, A. (2023). Clinicians’ Perceptions of Artificial Intelligence: Focus on Workload, Risk, Trust, Clinical Decision Making, and Clinical Integration. Healthcare, 11(16), 2308–2308. https://doi.org/10.3390/healthcare11162308

Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., Bourn, C., Turakhia, M. P., & Ng, A. Y. (2019). Publisher Correction: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine, 25(3), 530–530. https://doi.org/10.1038/s41591-019-0359-9

He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2018). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30–36. https://doi.org/10.1038/s41591-018-0307-0

Hoffman, R. R., Mueller, S. T., Klein, G., & Litman, J. (2018). Metrics for Explainable AI: Challenges and Prospects. ArXiv.org. https://arxiv.org/abs/1812.04608

Hong, L., Luo, M., Wang, R., Lu, P., Lu, W., & Lu, L. (2018). Big Data in Health Care: Applications and Challenges. Data and Information Management, 2(3), 175–197. https://doi.org/10.2478/dim-2018-0014

Huang, C., Mezencev, R., McDonald, J. F., & Vannberg, F. (2017). Open source machine-learning algorithms for the prediction of optimal cancer drug therapies. PLoS ONE, 12(10), e0186906–e0186906. https://doi.org/10.1371/journal.pone.0186906

Jacobson, N. C., Lekkas, D., Huang, R., & Thomas, N. (2020). Deep learning paired with wearable passive sensing data predicts deterioration in anxiety disorder symptoms across 17–18 years. Journal of Affective Disorders, 282, 104–111. https://doi.org/10.1016/j.jad.2020.12.086

Janarthanan, R., Doss, S., & Baskar, S. (2020). Optimized unsupervised deep learning assisted reconstructed coder in the on-nodule wearable sensor for human activity recognition. Measurement, 164, 108050. https://doi.org/10.1016/j.measurement.2020.108050

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101

Kadurin, I., Rothwell, S., Ferron, L., Meyer, O., & Dolphin, A. (2017). Investigation of the Proteolytic Cleavage of α 2 δ Subunits: A Mechanistic Switch from Nhibition to Activation of Voltage-Gated Calcium Channels? Biophysical Journal, 112(3), 244a244a. https://doi.org/10.1016/j.bpj.2016.11.1335

Kamala, Y. Lakshmi., Rao, K. V. S. N. R., & Josephine, B. Manjula. (2022). Comparison and Evaluation of Studies on Precision Medicine using AI. IEEE Xplore, 330–335. https://doi.org/10.1109/icscds53736.2022.9760969

Katoh, M., & Katoh, M. (2019). Precision medicine for human cancers with Notch signaling dysregulation (Review). International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2019.4418

Khan, H. M., & Zaidi, S. M. H. (2024). Detecting Security System Misconfiguration Threats in Cloud Computing Environments Using AI. American Journal of Innovation in Science and Engineering, 3(3), 31–40. https://doi.org/10.54536/ajise.v3i3.3272

Khan, H. M., & Zaidi, S. M. H. (2024). Detecting Security System Misconfiguration Threats in Cloud Computing Environments Using AI. American Journal of Innovation in Science and Engineering, 3(3), 31–40. https://doi.org/10.54536/ajise.v3i3.3272

khan, Z. F., & Alotaibi, S. R. (2020). Applications of Artificial Intelligence and Big Data Analytics in m-Health: A Healthcare System Perspective. Journal of Healthcare Engineering, 2020, 1–15. https://doi.org/10.1155/2020/8894694

Kim, S. J., Cho, K. J., & Oh, S. (2017). Development of machine learning models for diagnosis of glaucoma. PLoS ONE, 12(5), e0177726–e0177726. https://doi.org/10.1371/journal.pone.0177726

Lavecchia, A. (2014). Machine-learning approaches in drug discovery: methods and applications. Drug Discovery Today, 20(3), 318–331. https://doi.org/10.1016/j.drudis.2014.10.012

Le, D.-N., Subbiah Parvathy, V., Gupta, D., Khanna, A., J.P.C, J., & Shankar, K. (2021). IoT enabled depthwise separable convolution neural network with deep support vector machine for COVID-19 diagnosis and classification. International Journal of Machine Learning and Cybernetics, 12(11), 3235–3248. https://doi.org/10.1007/s13042-020-01248-7

Liu, M., Zhang, J., Adeli, E., & Shen, D. (2017). Landmark-based deep multi-instance learning for brain disease diagnosis. Medical Image Analysis, 43, 157–168. https://doi.org/10.1016/j.media.2017.10.005

Lu, M. Y., Chen, T. Y., Drew, Zhao, M., Shady, M., Lipkova, J., & Mahmood, F. (2021). AI-based pathology predicts origins for cancers of unknown primary. Nature, 594(7861), 106–110. https://doi.org/10.1038/s41586-021-03512-4

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., & Lee, S.-I. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 56–67. https://doi.org/10.1038/s42256-019-0138-9

Lusci, A., Pollastri, G., & Baldi, P. (2013). Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules. Journal of Chemical Information and Modeling, 53(7), 1563–1575. https://doi.org/10.1021/ci400187y

Machine Learning An Artificial Intelligence Approach. (2013). In J. G. Carbonell, R. S. Michalski, & T. M. Mitchell (Eds.), Google.co.uk (p. 572). Springer Berlin Heidelberg. https://www.google.co.uk/books/edition/Machine_Learning/-eqpCAAAQBAJ?hl=en

Maciukiewicz, M., Marshe, V. S., Hauschild, A.-C., Foster, J. A., Rotzinger, S., Kennedy, J. L., Kennedy, S. H., Müller, D. J., & Geraci, J. (2018). GWAS-based machine learning approach to predict duloxetine response in major depressive disorder. Journal of Psychiatric Research, 99, 62–68. https://doi.org/10.1016/j.jpsychires.2017.12.009

Magrabi, F., Elske Ammenwerth, McNair, J. B., Nicolet, Hannele Hyppönen, Pirkko Nykänen, Rigby, M., Scott, P. J., Tuulikki Vehko, Wong, Z. S.-Y., & Georgiou, A. (2019). Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications. Yearbook of Medical Informatics, 28(01), 128–134. https://doi.org/10.1055/s-0039-1677903

Malik, Y. S., Sircar, S., Bhat, S., Ansari, M. I., Pande, T., Kumar, P., Mathapati, B., Balasubramanian, G., Kaushik, R., Natesan, S., Ezzikouri, S., El Zowalaty, M. E., & Dhama, K. (2020). How artificial intelligence may help the Covid-19 pandemic: Pitfalls and lessons for the future. Reviews in Medical Virology, 31(5), 1–11. https://doi.org/10.1002/rmv.2205

Margulis, E., Dagan-Wiener, A., Ives, R. S., Jaffari, S., Siems, K., & Niv, M. Y. (2021). Intense bitterness of molecules: Machine learning for expediting drug discovery. Computational and Structural Biotechnology Journal, 19, 568–576. https://doi.org/10.1016/j.csbj.2020.12.030

McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. S., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., & Ledsam, J. R. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94. https://doi.org/10.1038/s41586-019-1799-6

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A Survey on Bias and Fairness in Machine Learning. ACM Computing Surveys, 54(6), 1–35. https://doi.org/10.1145/3457607

Meskó, B., & Topol, E. J. (2023). The imperative for regulatory oversight of large language models (or generative AI) in healthcare. Npj Digital Medicine, 6(1). https://doi.org/10.1038/s41746-023-00873-0

Morley, J., Machado, C. C. V., Burr, C., Cowls, J., Joshi, I., Taddeo, M., & Floridi, L. (2020). The ethics of AI in health care: A mapping review. Social Science & Medicine, 260, 113172. https://doi.org/10.1016/j.socscimed.2020.113172

Moshawrab, M., Adda, M., Bouzouane, A., Ibrahim, H., & Raad, A. (2022). Smart Wearables for the Detection of Occupational Physical Fatigue: A Literature Review. Sensors, 22(19), 7472. https://doi.org/10.3390/s22197472

Mumtaz, H., Saqib, M., Jabeen, S., Muneeb, M., Mughal, W., Sohail, H., Safdar, M., Mehmood, Q., Khan, M. A., & Ismail, S. M. (2023). Exploring alternative approaches to precision medicine through genomics and artificial intelligence – a systematic review. Frontiers in Medicine, 10. https://doi.org/10.3389/fmed.2023.1227168

Navarrete-Welton, A. J., & Hashimoto, D. A. (2020). Current applications of artificial intelligence for intraoperative decision support in surgery. Frontiers of Medicine, 14(4), 369–381. https://doi.org/10.1007/s11684-020-0784-7

Nemati, S., Holder, A., Razmi, F., Stanley, M. D., Clifford, G. D., & Buchman, T. G. (2017). An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Critical Care Medicine, 46(4), 547–553. https://doi.org/10.1097/ccm.0000000000002936

Noorbakhsh-Sabet, N., Zand, R., Zhang, Y., & Abedi, V. (2019). Artificial Intelligence Transforms the Future of Health Care. The American Journal of Medicine, 132(7), 795–801. https://doi.org/10.1016/j.amjmed.2019.01.017

Parikh, R. B., Teeple, S., & Navathe, A. S. (2019). Addressing Bias in Artificial Intelligence in Health Care. JAMA, 322(24), 2377–2377. https://doi.org/10.1001/jama.2019.18058

Park, T., Gu, P., Kim, C.-H., Kim, K. T., Chung, K. J., Kim, T. B., Jung, H., Yoon, S. J., & Oh, J. K. (2023). Artificial intelligence in urologic oncology: the actual clinical practice results of IBM Watson for Oncology in South Korea. Prostate International, 11(4), 218–221. https://doi.org/10.1016/j.prnil.2023.09.001

Pecchia, L., Melillo, P., & Bracale, M. (2011). Remote Health Monitoring of Heart Failure With Data Mining via CART Method on HRV Features. IEEE Transactions on Biomedical Engineering, 58(3), 800–804. https://doi.org/10.1109/tbme.2010.2092776

Pesapane, F., Codari, M., & Sardanelli, F. (2018). Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. European Radiology Experimental, 2(1). https://doi.org/10.1186/s41747-018-0061-6

Pierleoni, P., Belli, A., Palma, L., Pellegrini, M., Luca Pernini, & Valenti, S. (2015). A High Reliability Wearable Device for Elderly Fall Detection. IEEE Sensors Journal, 15(8), 4544–4553. https://doi.org/10.1109/jsen.2015.2423562

Plenge, R. M. (2016). Disciplined approach to drug discovery and early development. Science Translational Medicine, 8(349). https://doi.org/10.1126/scitranslmed.aaf2608

Polykovskiy, D., Zhebrak, A., Vetrov, D., Ivanenkov, Y., Aladinskiy, V., Mamoshina, P., Bozdaganyan, M., Aliper, A., Zhavoronkov, A., & Kadurin, A. (2018). Entangled Conditional Adversarial Autoencoder for de Novo Drug Discovery. Molecular Pharmaceutics, 15(10), 4398–4405. https://doi.org/10.1021/acs.molpharmaceut.8b00839

Popova, M., Isayev, O., & Tropsha, A. (2018). Deep reinforcement learning for de novo drug design. Science Advances, 4(7). https://doi.org/10.1126/sciadv.aap7885

Pu, L., Naderi, M., Liu, T., Wu, H.-C., Mukhopadhyay, S., & Brylinski, M. (2019). eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacology and Toxicology, 20(1). https://doi.org/10.1186/s40360-018-0282-6

Rad, N. M., Kia, S. M., Zarbo, C., Laarhoven, van, Jurman, G., Venuti, P., Marchiori, E., & Furlanello, C. (2017). Deep Learning for Automatic Stereotypical Motor Movement Detection using Wearable Sensors in Autism Spectrum Disorders. ArXiv.org. https://arxiv.org/abs/1709.05956

Radanliev, P., & De Roure, D. (2022). Advancing the cybersecurity of the healthcare system with self-optimising and self-adaptative artificial intelligence (part 2). Health and Technology, 12(5), 923–929. https://doi.org/10.1007/s12553-022-00691-6

Raghavendra, U., Acharya, U. Rajendra, & Adeli, H. (2019). Artificial Intelligence Techniques for Automated Diagnosis of Neurological Disorders. European Neurology, 82(1-3), 41–64. https://doi.org/10.1159/000504292

Rahman, R. M., & Afroz, F. (2013). Comparison of Various Classification Techniques Using Different Data Mining Tools for Diabetes Diagnosis. Journal of Software Engineering and Applications, 06(03), 85–97. https://doi.org/10.4236/jsea.2013.63013

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G. E., Irvine, J., Le, Q., Litsch, K., & Mossin, A. (2018). Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 1(1). https://doi.org/10.1038/s41746-018-0029-1

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K., Lungren, M. P., & Ng, A. Y. (2017). CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. ArXiv.org. https://arxiv.org/abs/1711.05225

Rantanen, J., & Khinast, J. (2015). The Future of Pharmaceutical Manufacturing Sciences. Journal of Pharmaceutical Sciences, 104(11), 3612–3638. https://doi.org/10.1002/jps.24594

Raschka, S. (2019). Automated discovery of GPCR bioactive ligands. Current Opinion in Structural Biology, 55, 17–24. https://doi.org/10.1016/j.sbi.2019.02.011

Raschka, S., & Kaufman, B. (2020). Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition. Methods, 180, 89–110. https://doi.org/10.1016/j.ymeth.2020.06.016

Rawat, B., Joshi, Y., & Kumar, A. (2023a). AI in Healthcare: Opportunities and Challenges for Personalized Medicine and Disease Diagnosis. IEEE Xplore, 374–379. https://doi.org/10.1109/icirca57980.2023.10220746

Rawat, B., Joshi, Y., & Kumar, A. (2023b). AI in Healthcare: Opportunities and Challenges for Personalized Medicine and Disease Diagnosis. 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA), 374–379. https://doi.org/10.1109/icirca57980.2023.10220746

Reddy, S., Allan, S., Coghlan, S., & Cooper, P. (2019). A governance model for the application of AI in health care. Journal of the American Medical Informatics Association, 27(3), 491–497. https://doi.org/10.1093/jamia/ocz192

Richardson, J. P., Smith, C., Curtis, S., Watson, S., Zhu, X., Barry, B., & Sharp, R. R. (2021a). Patient apprehensions about the use of artificial intelligence in healthcare. Npj Digital Medicine, 4(1). https://doi.org/10.1038/s41746-021-00509-1

Richardson, J. P., Smith, C., Curtis, S., Watson, S., Zhu, X., Barry, B., & Sharp, R. R. (2021b). Patient apprehensions about the use of artificial intelligence in healthcare. Npj Digital Medicine, 4(1). https://doi.org/10.1038/s41746-021-00509-1

Rumsfeld, J. S., Joynt, K. E., & Maddox, T. M. (2016). Big data analytics to improve cardiovascular care: promise and challenges. Nature Reviews Cardiology, 13(6), 350–359. https://doi.org/10.1038/nrcardio.2016.42

Santus, E., Marino, N., Cirillo, D., Chersoni, E., Montagud, A., Chadha, A. S., Valencia, A., Hughes, K., & Lindvall, C. (2021). Artificial Intelligence–Aided Precision Medicine for COVID-19: Strategic Areas of Research and Development. Journal of Medical Internet Research, 23(3), e22453–e22453. https://doi.org/10.2196/22453

Scannell, J. W., Blanckley, A., Boldon, H., & Warrington, B. (2012). Diagnosing the decline in pharmaceutical R&D efficiency. Nature Reviews Drug Discovery, 11(3), 191–200. https://doi.org/10.1038/nrd3681

Schmidt, P., Biessmann, F., & Teubner, T. (2020). Transparency and trust in artificial intelligence systems. Journal of Decision Systems, 29(4), 260–278. https://doi.org/10.1080/12460125.2020.1819094

Schuhmacher, A., Gatto, A., Kuss, M., Gassmann, O., & Hinder, M. (2021a). Big Techs and startups in pharmaceutical R&D – A 2020 perspective on artificial intelligence. Drug Discovery Today, 26(10), 2226–2231. https://doi.org/10.1016/j.drudis.2021.04.028

Schuhmacher, A., Gatto, A., Kuss, M., Gassmann, O., & Hinder, M. (2021b). Big Techs and startups in pharmaceutical R&D – A 2020 perspective on artificial intelligence. Drug Discovery Today, 26(10), 2226–2231. https://doi.org/10.1016/j.drudis.2021.04.028

Shameer, K., Johnson, K. W., Yahi, A., Miotto, R., Li, L., Ricks, D., Jebakaran, J., Kovatch, P., Sengupta, P. P., Gelijns, S., Moskovitz, A., Darrow, B., David, D. L., Kasarskis, A., Tatonetti, N. P., Pinney, S., & Dudley, J. T. (2016). Predictive Modeling Of Hospital Readmission Rates Using Electronic Medical Record-Wide Machine Learning: A Case-Study Using Mount Sinai Heart Failure Cohort. Biocomputing. Https://Doi.org/10.1142/9789813207813_0027

Sharma, T., Parihar, J., & Singh, S. (2021). Intelligent Chatbot for Prediction and Management of Stress. IEEE Xplore, 937–941. https://doi.org/10.1109/confluence51648.2021.9377091

Soares, T. A., Nunes-Alves, A., Mazzolari, A., Ruggiu, F., Wei, G.-W., & Merz, K. (2022). The (Re)-Evolution of Quantitative Structure–Activity Relationship (QSAR) Studies Propelled by the Surge of Machine Learning Methods. Journal of Chemical Information and Modeling, 62(22), 5317–5320. https://doi.org/10.1021/acs.jcim.2c01422

Somashekhar, S. P., Sepúlveda, Martín-J., Norden, A. D., Rauthan, A., Arun, K., Patil, P., Ethadka, R. Y., & Kumar, R. C. (2017). Early experience with IBM Watson for Oncology (WFO) cognitive computing system for lung and colorectal cancer treatment. Journal of Clinical Oncology, 35(15_suppl), 8527–8527. https://doi.org/10.1200/jco.2017.35.15_suppl.8527

Steele, A. J., Denaxas, S. C., Shah, A. D., Hemingway, H., & Luscombe, N. M. (2018). Machine learning models in electronic health records can outperform conventional survival models for predicting patient mortality in coronary artery disease. PLoS ONE, 13(8), e0202344–e0202344. https://doi.org/10.1371/journal.pone.0202344

Stiglic, G., Kocbek, P., Fijacko, N., Zitnik, M., Verbert, K., & Cilar, L. (2020). Interpretability of machine learning-based prediction models in healthcare. WIREs Data Mining and Knowledge Discovery, 10(5). https://doi.org/10.1002/widm.1379

Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., MacNair, C. R., French, S., Carfrae, L. A., Bloom-Ackermann, Z., Tran, V. M., Chiappino-Pepe, A., Badran, A. H., Andrews, I. W., Chory, E. J., Church, G. M., Brown, E. D., Jaakkola, T. S., Barzilay, R., & Collins, J. J. (2020). A Deep Learning Approach to Antibiotic Discovery. Cell, 180(4), 688-702.e13. https://doi.org/10.1016/j.cell.2020.01.021

Toh, T. S., Dondelinger, F., & Wang, D. (2019). Looking beyond the hype: Applied AI and machine learning in translational medicine. EBioMedicine, 47, 607–615. https://doi.org/10.1016/j.ebiom.2019.08.027

Turki, T., & Taguchi, Y-h. (2019). Machine learning algorithms for predicting drugs–tissues relationships. Expert Systems with Applications, 127, 167–186. https://doi.org/10.1016/j.eswa.2019.02.013

Vaidyam, A. N., Wisniewski, H., Halamka, J. D., Kashavan, M. S., & Torous, J. B. (2019). Chatbots and Conversational Agents in Mental Health: A Review of the Psychiatric Landscape. The Canadian Journal of Psychiatry, 64(7), 456–464. https://doi.org/10.1177/0706743719828977

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5

van Bronswijk, S. C., DeRubeis, R. J., Lemmens, L. H. J. M., Peeters, F. P. M. L., Keefe, J. R., Cohen, Z. D., & Huibers, M. J. H. (2019). Precision medicine for long-term depression outcomes using the Personalized Advantage Index approach: cognitive therapy or interpersonal psychotherapy? Psychological Medicine, 51(2), 279–289. https://doi.org/10.1017/s0033291719003192

Wang, H., & Xia, Y. (2018). ChestNet: A Deep Neural Network for Classification of Thoracic Diseases on Chest Radiography. ArXiv.org. https://doi.org/10.48550/arXiv.1807.03058

Wang, S., Yang, D. M., Rong, R., Zhan, X., Fujimoto, J., Liu, H., Minna, J., Wistuba, I. I., Xie, Y., & Xiao, G. (2019). Artificial Intelligence in Lung Cancer Pathology Image Analysis. Cancers, 11(11), 1673. https://doi.org/10.3390/cancers11111673

Webb, C. A., Trivedi, M. H., Cohen, Z. D., Dillon, D. G., Fournier, J. C., Goer, F., Fava, M., McGrath, P. J., Weissman, M., Parsey, R., Adams, P., Trombello, J. M., Cooper, C., Deldin, P., Oquendo, M. A., McInnis, M. G., Huys, Q., Bruder, G., Kurian, B. T., & Jha, M. (2018). Personalized prediction of antidepressant v. placebo response: evidence from the EMBARC study. Psychological Medicine, 49(07), 1118–1127. https://doi.org/10.1017/s0033291718001708

Wessler, B. S., YH, L. L., Kramer, W., Cangelosi, M., Raman, G., Lutz, J. S., & Kent, D. M. (2015). Clinical Prediction Models for Cardiovascular Disease. Circulation Cardiovascular Quality and Outcomes, 8(4), 368–375. https://doi.org/10.1161/circoutcomes.115.001693

Willemink, M. J., Koszek, W. A., Hardell, C., Wu, J., Fleischmann, D., Harvey, H., Folio, L. R., Summers, R. M., Rubin, D. L., & Lungren, M. P. (2020). Preparing Medical Imaging Data for Machine Learning. Radiology, 295(1), 4–15. https://doi.org/10.1148/radiol.2020192224

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into Imaging, 9(4), 611–629. https://doi.org/10.1007/s13244-018-0639-9

Young, F., Zhang, L., Jiang, R., Liu, H., & Wall, C. (2020). A Deep Learning based Wearable Healthcare IoT Device for AI-enabled Hearing Assistance Automation. ArXiv.org. https://arxiv.org/abs/2005.08076

Zamkah, A., Hui, T., Andrews, S., Dey, N., Shi, F., & Sherratt, R. S. (2020). Identification of Suitable Biomarkers for Stress and Emotion Detection for Future Personal Affective Wearable Sensors. Biosensors, 10(4), 40–40. https://doi.org/10.3390/bios10040040

Zhao, K., Jiang, H., Yuan, T., Zhang, C., Jia, W., & Wang, Z. (2020). A CNN Based Human Bowel Sound Segment Recognition Algorithm with Reduced Computation Complexity for Wearable Healthcare System. 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5. https://doi.org/10.1109/iscas45731.2020.9180432

Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., Veselov, M. S., Aladinskiy, V. A., Aladinskaya, A. V., Terentiev, V. A., Polykovskiy, D. A., Kuznetsov, M. D., Asadulaev, A., Volkov, Y., Zholus, A., Shayakhmetov, R. R., Zhebrak, A., Minaeva, L. I., Zagribelnyy, B. A., Lee, L. H., Soll, R., Madge, D., & Xing, L. (2019). Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 37(9), 1038–1040. https://doi.org/10.1038/s41587-019-0224-x

Zhou, N., Zhang, C.-T., Lv, H.-Y., Hao, C.-X., Li, T.-J., Zhu, J.-J., Zhu, H., Jiang, M., Liu, K.-W., Hou, H.-L., Liu, D., Li, A.-Q., Zhang, G.-Q., Tian, Z.-B., & Zhang, X.-C. (2018). Concordance Study Between IBM Watson for Oncology and Clinical Practice for Patients with Cancer in China. The Oncologist, 24(6), 812–819. https://doi.org/10.1634/theoncologist.2018-0255

Zhou, S.-F., & Zhong, W.-Z. (2017). Drug Design and Discovery: Principles and Applications. Molecules, 22(2), 279–279. https://doi.org/10.3390/molecules22020279

Zou, F., Tang, Y., Liu, C., Ma, J., & Hu, C. (2020). Concordance Study Between IBM Watson for Oncology and Real Clinical Practice for Cervical Cancer Patients in China: A Retrospective Analysis. Frontiers in Genetics, 11. https://doi.org/10.3389/fgene.2020.00200

Zurbuchen, N., Bruegger, P., & Wilde, A. (2020). A Comparison of Machine Learning Algorithms for Fall Detection using Wearable Sensors. 427–431. https://doi.org/10.1109/icaiic48513.2020.9065205

Downloads

Published

2025-04-18

How to Cite

Ajimatanrareje, G. A., Ekeh, C., Igwilo, S., & Osunkwo, C. (2025). The Current Landscape of AI Application in Healthcare: A Review. American Journal of Innovation in Science and Engineering, 4(2), 1–16. https://doi.org/10.54536/ajise.v4i2.4432