A Bi-Level Stochastic-Robust MILP Framework for Coordinated EV Charging/Discharging with Battery-Degradation and Piecewise-Linear Network Constraints in Distribution-Level Smart Grids
DOI:
https://doi.org/10.54536/ajise.v4i2.5131Keywords:
Bi-Level, Distribution System, Electric Vehicle, StochasticAbstract
This work proposes a novel bi level mixed integer linear programming (MILP) framework that simultaneously addresses distribution system operator objectives and EV aggregator profit maximization under uncertainty, while fully capturing network and battery dynamics. In the upper level, the distribution operator minimizes expected energy procurement cost and peak demand penalties across a set of forecast scenarios (±20 % PV and load deviations), subject to linearized DistFlow constraints rendered tractable via on the fly piecewise linearization. In the lower level, each of five aggregators maximizes day ahead market arbitrage revenue minus linearized battery degradation costs, bidding aggregate EV charge/discharge power into hourly markets. We enforce non simultaneous charge/discharge, state of charge and power limits across 200 EVs over a 24 hour horizon. The bi level program is reformulated into a single MILP using Karush–Kuhn–Tucker conditions and solved efficiently via Benders decomposition. Simulations on the IEEE 33 bus test feeder demonstrate up to 20 % peak load reduction, 15 % energy cost savings, zero network violations under worst case uncertainty, and a 12 % increase in aggregator profit compared to benchmark scheduling. The proposed model advances the state of the art by integrating market participation, robust optimization, and explicit battery aging considerations in a scalable, network aware EV scheduling framework.
Downloads
References
Akyildiz, A., Ergun, B. E., Uzun, E., Zehir, M. A., Kucuktezcan, C. F., Kocaarslan, I., & Gulbahce, M. O. (2025). Optimum selection of lithium iron phosphate battery cells for electric vehicles. IEEE Access, 13, 55070–55080. https://doi.org/10.1109/ACCESS.2025.3553081
Aldhanhani, T., Abraham, A., Hamidouche, W., & Shaaban, M. (2024). Future trends in smart green IoV: Vehicle-to-everything in the era of electric vehicles. IEEE Open Journal of Vehicular Technology, 5, 278-297. https://doi.org/10.1109/OJVT.2024.3358893
Bagherinezhad, A., Alizadeh, M., & Parvania, M. (2024). Rolling horizon approach for real-time charging and routing of autonomous electric vehicles. IEEE Open Access Journal of Power and Energy, 11, 94-103. https://doi.org/10.1109/OAJPE.2023.3347972
Cui, D., Liu, Y., Zhang, H., Wang, Y., & Li, X. (2024). Coordinated charging scheme for electric vehicle fast-charging station with demand-based priority. IEEE Transactions on Transportation Electrification, 10(3), 6449–6459. https://doi.org/10.1109/TTE.2023.3334809
Gan, W., Wen, J., Yan, M., Zhou, Y., & Yao, W. (2024). Enhancing resilience with electric vehicles charging redispatching and vehicle-to-grid in traffic-electric networks. IEEE Transactions on Industry Applications, 60(1), 953-965. https://doi.org/10.1109/TIA.2023.3272870
He, Y., Mattas, K., Makridis, M., Komnos, D., Laverde Marin, A., Fontaras, G., & Ciuffo, B. (2024). Introducing hybrid vehicle dynamics in microscopic traffic simulation. IEEE Transactions on Intelligent Transportation Systems, 25(7), 7977–7986. https://doi.org/10.1109/TITS.2024.3378183
Hu, Z., Mehrjardi, R. T., & Ehsani, M. (2024). On the lifetime emissions of conventional, hybrid, plug-in hybrid and electric vehicles. IEEE Transactions on Industry Applications, 60(2), 3502-3511. https://doi.org/10.1109/TIA.2023.3330950
Kim, D. S., Chung, Y. M., & Chung, B. J. (2024). On the electric energy rate plans in charging electric vehicles. IEEE Access, 12, 97196-97206. https://doi.org/10.1109/ACCESS.2024.3428495
Li, Y., Ouyang, M., Chan, C. C., Sun, X., Song, Y., Cai, W., Xie, Y., & Mao, Y. (2024). Key technologies and prospects for electric vehicles within emerging power systems: Insights from five aspects. CSEE Journal of Power and Energy Systems, 10(2), 439–447. https://doi.org/10.17775/CSEEJPES.2024.00190
Liu, J., Wang, C., Zhao, W., & Zhang, Z. (2025). Energy-efficient hierarchical on-ramp merging control for autonomous electric vehicles. IEEE Transactions on Transportation Electrification, 11(1), 710-720. https://doi.org/10.1109/TTE.2024.3394885
Lopes, J. C., Sousa, T., & Melo, J. D. (2024). Demand estimation for electric vehicle charging infrastructure: An extensive approach method. IEEE Access, 12, 113215-113234. https://doi.org/10.1109/ACCESS.2024.3444735
Maghfiroh, H., Wahyunggoro, O., & Cahyadi, A. I. (2024). Energy management in hybrid electric and hybrid energy storage system vehicles: A fuzzy logic controller review. IEEE Access, 12, 56097-56109. https://doi.org/10.1109/ACCESS.2024.3390436
Meena, V., Singh, V. P., Padmanaban, S., & Benedetto, F. (2024). Rank exponent-based reduction of higher order electric vehicle systems. IEEE Transactions on Vehicular Technology, 73(9), 12438-12447. https://doi.org/10.1109/TVT.2024.3387975
Naqvi, S. S. A., Jamil, H., Iqbal, N., Khan, S., Khan, M. A., Qayyum, F., & Kim, D. H. (2024). Evolving electric mobility energy efficiency: In-depth analysis of integrated electronic control unit development in electric vehicles. IEEE Access, 12, 15957–15983. https://doi.org/10.1109/ACCESS.2024.3356598
Vasconcelos, S. D., Castro, J. F. C., Limongi, L., & Dantas, N. K. L. (2024). Assessment of electric vehicles charging grid impact via predictive indicator. IEEE Access, 12, 163307–163323. https://doi.org/10.1109/ACCESS.2024.3482095
Wang, H., Chen, S., Li, M., Zhao, Y., & Wang, Z. (2024). Demand-driven charging strategy-based distributed routing optimization under traffic restrictions in internet of electric vehicles. IEEE Internet of Things Journal, 11(22), 35917–35927. https://doi.org/10.1109/JIOT.2024.3383876
Wang, Y., Lian, R., He, H., Betz, J., & Wei, H. (2024). Auto-tuning dynamics parameters of intelligent electric vehicles via Bayesian optimization. IEEE Transactions on Transportation Electrification, 10(3), 6915-6927. https://doi.org/10.1109/TTE.2023.3346874
Yuvaraj, T., Devabalaji, K. R., Kumar, J. A., Thanikanti, S. B., & Nwulu, N. I. (2024). A comprehensive review and analysis of the allocation of electric vehicle charging stations in distribution networks. IEEE Access, 12, 5404-5461. https://doi.org/10.1109/ACCESS.2023.3349274
Zou, S., Zhang, J., Liu, Y., Yang, Y., Zhou, Y., Wang, J., Peng, J., & Wang, G. (2024). Design and analysis of a novel multimode powertrain for a PHEV using two electric machines. IEEE Access, 12, 76442–76457. https://doi.org/10.1109/ACCESS.2024.3406541
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Benjamin Nyabera Kerama

This work is licensed under a Creative Commons Attribution 4.0 International License.